02	TRIBHUVAN UNIVERSITY	Exam.		Back	
INST	TUTE OF ENGINEERING	Level	BE ·	Full Marks	80
xami	nation Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
	2075 Ashwin	Year / Part	II / I	Time	3 hrs
		N.C. 11		ste wardt eft gelander of gelander. Mit sonde akteurigenien werden 2006 after og en synsteme	
	Subject: - Engineeri	ng Mathemat	ICS III (SHSUI)	practicable	
Cand	idates are required to give their an	swers in their o	wil wolus as lal as	practicable.	
The f	gures in the margin indicate Full	Marks.			
Assu	ne suitable data if necessary.				
			Classifier		
Defir	e the determinant as a function an	d using its prop	erties. Snow that		
b+c	c+a a+b a p x				
q + r	r+p p+q = 2b q y				
y+2	z+x + y c r z				
If A	and B are orthogonal matrices of	of same order,	prove that the pro-	oduct AB is a	lso
ortho	gonal.				
Test	the consistency of the system x-	2y + 2z = 4, 3z	x+y+4z=6 and	x+y+z=1 a	and
solve	completely if found consistent.				
Ean	(5 4) find the mod	al matrix and th	e corresponding d	iagonal matrix	
. FOR a	$(1 2)^{1}$, $(1 2)^{1}$	at matrix and th	o oonooponanig a		
	$t^{B} \rightarrow \rightarrow \cdots$	1	• • • • • • • • • • • • • •	acieta A and E	in
. Prov	e that line integral $\int_A F dr$ is inde	ependent of path	n joining any two j	points A and I	> 111
the r	gion if and only if $(\vec{F}.d\vec{r}=0$ for	any simple clo	sed curve C in the	region.	
	JC	c 17- 2	2)1 (1 (1.7	1 :-
. Veri	y Green's theorem in the plane	for $\int_C [3x^2 - 3x^2]$	$8y^{-}$ ax + (4y - 6xy	ay where c	, 15
regio	n bounded by $y = x^2$ and $x = y^2$.				
		$\rightarrow \rightarrow$	Q is the region	n of the nl	ane
. Eval	late $\iint_{S} F \cdot n ds$ where $F = 021$	-4 J+ yK and	i b is the legic	, or the pr	une
2x+	3y+6z=12 bounded in the first of	octant.			
Eval	nate using Gauss divergence the	orem. \vec{F} , \vec{F} , \vec{h} ds	where $\vec{F} = x^2 y^2$	$i + xy^2 \vec{j} + 2xy$	zk
and (is the surface bounded by the nig	J_s	z = 0, x + 2y + z	= 2.	
anu	is the surface bounded by the pla	() $()$ $()$ $()$ $()$ $()$ $()$ $()$		and deduce t	hat
. Obta	in the Fourier Series to represent	$f(\mathbf{x}) = \mathbf{x} - \mathbf{x}$ if	$\int dx = -\pi \log x = 7$		nat
π^2	1 1 1 1 1				
12	1^2 2^2 3^2 4^2				
0. Obta	in the half range Fourier Sine Seri	es for $f(x) = \pi$ -	x in the range $0 <$	$x < \pi$.	
1. State	the conditions for existence of La	place transform	n. Obtain the Lapla	ice transform of	of:
	$\cos 2t - \cos 3t$	t			F1.4
(1)	2t cos ³ 2t (ii) 0002t 0000				117

12. Find the inverse Laplace transform of:

(i)
$$\frac{1}{(S-2)(S^2+1)}$$
 (ii) $\cot^{-1}(S+1)$ [2.5+2.5]

13. Solve the following initial value problem by using Laplace transform:

$$y'' + 4y' + 3y = e^t$$
, $y(0) = 0; y'(0) = 2$ [5]

14. Graphically maximize $Z = 7x_1 + 10x_2$

Subject to constraints:

1

 $3x_1 + x_2 \le 9$ $x_1 + 2x_2 \le 8$ $x_1, x_2 \ge 0.$

15. Solve the following linear Programming Problem by simple method:

Maximize: $Z = 3x_1 + 5x_2$ Subject to: $3x_1 + 2x_2 \le 18$ $x_1 \le 4$, $x_2 \le 6$

 $x_1, x_2 \ge 0.$

[10]

[5]

01 TRIBHUVAN UNIVERSITY	Exam.	R	egular	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
2074 Chaitra	Year / Part	II/I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH501)

 ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate <u>Full Marks</u>. ✓ Assume suitable data if necessary. 	
1. If $\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0$ where $a \neq b \neq c$; apply properties of determinant to show $abc = 1$.	[5]
2. If A be an $n \times n$ matrix, prove that	
Adj (A) . A = A . (AdjA) = $ A I$ where I is an n × n unit matrix.	[5]
3. Find the rank of the following matrix by reducing it into normal form:	
$ \begin{pmatrix} 3 & 1 & 4 \\ 0 & 5 & 8 \\ -3 & 4 & 4 \\ 1 & 2 & 4 \end{pmatrix} $	[5]
4. Find the modal matrix for the matrix	
$A = \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 3 \\ 2 & 1 & -1 \end{pmatrix}$	[5]
5. State and prove Green's theorem in plane.	[5]
6. Find the total work done in moving the particle in a force field given b	[5]
$\vec{F} = \text{Siny } \vec{i} + x(1 + \cos y) \vec{j}$ over the circular path $x^2 + y^2 = a^2$, $z = 0$.	[5]
7. Evaluate $\iint \vec{F} \cdot d\vec{s}$ where $\vec{F} = x\vec{i} - y\vec{j} + z\vec{k}$ and s is the surface of the cylinde	r
$x + y = a^{-}, 0 < z < b.$	[5]
8. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.	[5]
9. Obtain Fourier series for $f(x) = x^3$ in the interval $\pi < x < \pi$	[5]
10. Express $f(x) = e^x$ as a half range Fourier Cosine Series in $0 < x < 1$	[5]
11. State existence theorem for Laplace Transform. Obtain the Laplace transform of	[2]
a) te ^{-t} sint b) $\frac{e^{-at} - e^{-bt}}{t}$	1+2+2]

12. Find the inverse Laplace transform of:

a)
$$\frac{1}{s^2 - 5s + 6}$$
 b) $\tan^{-1}\frac{2}{s}$ [2+5.+2.5]

[5]

[5]

[10]

13. By using Laplace transform, solve the initial value problem:

y'' + 2y = r (t), y(0) = y' (0) = 0Where r(t) = 1, 0 < t < 1= 0, otherwise

14. Graphically maximize $Z = 5x_1 + 3x_2$ Subject to constraints

 $x_1 + 2x_2 \le 50$ $2x_1 + x_2 \le 40$. $x_{1,}, x_2 \ge 0$

*

15. Solve the following Linear Programming Problem by simple method:

Maximize : Z = 4x + 3y

Subject to : $2x + 3y \le 6$ $-x + 2y \le 3$ $2y \le 5$ $2x + y \le 4$ $x, y \ge 0.$

W?

01 TRIBHUVAN UNIVERSITY	Exam.		Back	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	ALL (Except B. Arch)	Pass Marks	32
2074 Ashwin	Year / Part	II / I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH501)

- Candidates are required to give their answers in their own words as far as practicable. 1
- Attempt All questions. ~
- The figures in the margin indicate Full Marks. ~
- Assume suitable data if necessary. ~

Use properties of determinant to show

$$\begin{vmatrix} x^2 & x^2 - (y - z)^2 & yz \\ y^2 & y^2 - (z - x)^2 & zx \\ z^2 & z^2 - (x - y)^2 & xy \end{vmatrix} = (x - y)(y - z)(z - x)(x + y + z)(x^2 + y^2 + z^2)$$

2. Prove that every square matrix can be uniquely expressed as the sum of symmetric and a skew symmetric matrix. [5]

[5]

[3+2]

3. Define eigen values and eigen vectors in terms of linear transformation with matrices as operator. Find eigen values of the matrix. [2+3]

 $\begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$

4. Test the consistency of the system x+y+z=3, x+2y+3z=4, 2x+3y+4z=7 by using rank of matrix method and solve if consistent. [5]

- 5. If \vec{F} is the gradient of some scalar point functions ϕ i.e $\vec{F} = \nabla \phi$, prove that the line integral is independent of the path joining any two points in the region and conversely. [5] 6. Evaluate $\iint \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = xy \vec{i} - x^2 \vec{j} + (x+z)\vec{K}$ and S is the region of the plane
- 2x+2y+z=6 bounded in the first quadrant. [5] 7. State and prove Green's theorem in plane. [5]
- 8. Apply Gauss' divergence theorem to evaluate $\iint_{s} \left[(x^{3} yz)\vec{i} 2x^{2}y\vec{j} + 2\vec{K} \right] \cdot \vec{n} ds$, where S is the surface of the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a. [5] 9. Expand $f(x) = x \sin x$ as a Fourier series in $-\pi \le x \le \pi$. [5] 10. Obtain half range cosine series for f(x) = x in the interval $0 \le x \le \pi$. :[5]
- 11. Find the Laplace transform of:
 - i) t² cosat
 - ii) $\frac{\sin t}{t}$

12. State convolution theorem for inverse Laplace transform and use it to find the inverse	
Laplace transform of $\frac{S}{(S^2 + 4)(S^2 + 9)}$	[1+4]
13. Solve the following initial value problem by using Laplace transform:	[5]
$y''+2y'-3y = \sin t$, $y(0) = y'(0) = 0$	
14. Graphically maximize	[5]
$Z = 7x_1 + 10x_2$	
Subject to constraints,	
$3x_1 + x_2 \le 9$	
$x_{1} + 2x_{2} \le 8$	

[10]

 $\mathbf{x}_1, \mathbf{x}_2 \ge 0$

15. Solve the following LPP by simplex method using duality of:

Minimize Z = 20x+50y

Subject to:

 $2x + 5y \ge 12$ $3x + 7y \ge 17$ $x, y \ge 0$

(1 TRIBHUVAN UNIVERSITY	Exam.	New Back (2066	& Later Bat	ch)
	INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Ex	amination Control Division	Programme	ALL (Except B. Arch)	Pass Marks	32
	2073 Shrawan	Year / Part	1I / I	Time	3 hrs.
	Culient Engineer	ing Mathema	tics II (SH501)		
	Subject: - Engineer			11	
~	Candidates are required to give their ans	swers in their o	wn words as far as pra	icticable.	
× √	The figures in the margin indicate Full	Marks.			
~	Assume suitable data if necessary.				
			21		
1	It an action of dataminants to prove	a^2 b $a^2 \pm ab$ b	$\begin{vmatrix} c \\ c \\ c \\ ac \end{vmatrix} = 4a^2b^2c$	2	[5]
J:	Use properties of determinants to prove	$ab b^2 +$	$-bc$ c^2	-	L-1
2	Prove that the necessary and sufficient	t condition for	r a square matrix A	to posses an	
2.	inverse is that the matrix A should be no	on singular.	1	1	[5]
	$\begin{pmatrix} 1 & 3 & -2 \end{pmatrix}$	1)			
2	Tild such a fithe metric 1 1 1	1			[5]
3.	Find the rank of the matrix $2 0 -3$	2			[0]
	3 3 -3	3)			
	by reducing it into normal form.				
		(:	2 1 1		
4.	Find the eigenvalues and eigenvectors	of the matrix	1 2 1		[4+1]
			0 0 1)		
	Give an example showing importance of	of eigenvectors.			
1	Show that $\vec{F} = (2x + z^2)\vec{i} + Z\vec{i} + (y + 2x)\vec{j}$	$(z)\vec{K}$ is irrotation	onal and find its scalar	potential.	[5]
6	State and prove Green's Theorem in pla	ine.			[5]
0.	$\begin{array}{ccc} \text{Surfer and prove Greens function in } p \\ e^{-} \rightarrow & \rightarrow & \rightarrow \end{array}$	\rightarrow \rightarrow		C (1)	
7.	Evaluate $\iint_{s} F.n ds$, where $F = yz i + z$	zx j+xyk and	S is the surface of	of the sphere	
	$x^2 + y^2 + z^2 = 1$ in the first octant.				[5]
8.	Evaluate $\int xy dx + xy^2 dy$ by applying	stokes theorem	where C is the square	re in xy-plane	
	with vertices (1,0), (-1,0), (0,1), (0,-1)				[5]
9.	Find the Laplace transform of :				[2+3]
	i) $te^{2t} \sin 3t$				
	ii) $e^{-t} \sin t$				
	~ t				

10. Find the inverse Laplace transform of :	[2+3]
i) $\frac{s+2}{s^2-4s+13}$	
ii) $\log\left(\frac{s+a}{s-a}\right)$	
11. Solve the following initial value problem using Laplace transform:	[5]
$x''+4x'+4x = 6e^{-t}, x(0) = -2, x'(0) = -8$	
12. Find the Fourier series representation of $f(x) = x $ in $[-\pi, \pi]$	[5]
13. Obtain the half range Fourier Sine Series for the function $f(x) = x^2$ in the interval (0, 3).	[5]
14. Apply Graphical method to maximize,	[5]
$Z = 5x_1 + 3x_2$	
Subject to the constraints:	
$x_1 + 2x_2 \le 50$	
$2\mathbf{x}_1 + \mathbf{x}_2 \le 40$	
$x_1 \ge 0, x_2 \ge 0$	
15. Solve the following Linear Programming Problem by Simplex method:	[10]
Maximize: $Z = 15x_1 + 10x_2$	
Subject to: $x_1 + 3x_2 \le 10$	
$2x_1 + x_2 \le 10$	
$x_1 \ge 0, x_2 \ge 0$	

01 TRIBHUVAN UNIVERSITY	Exam.	R	egular	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	All (Except B. Arch)	Pass Marks	32
2072 Chaitra	Year / Part	II / I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. Use properties of determinants to prove:

$a^{2} + 1$	ba	ca	da	
ab	$b^{2} + 1$	cb	db	$-1 + a^2 + b^2 + a^2 + d^2$
ac	bc	$c^{2} + 1$	dc	
ad	bd	cd	$d^{2} + 1$	

- Show that every square matrix can be uniquely expressed as the sum of symmetric and Skew-Symmetric matrices. [5]
- Test the consistency of the system x+y+z=3, x+2y+3z=4 and 2x+3y+4z=7 and solve completely if found consistent.
- 4. State Cayley-Hamilton theorem and verify it for the matrix; $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$ [1+4]

Prove that "The line integral ∫_e F.d r of a continuous function F defined in a region R is independent of path C joining any two points in R if and only if there exists a single valued scalar function φ having first order partial derivatives such that F = ∇φ". [5]

- 6. State Green's theorem and use it to find the area of astroid $x^{2/3} + y^{2/3} = a^{2/3}$. [5]
- 7. Evaluate $\iint_{s} \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and 's' is the surface of the plane x + y + z = 1 between the co-ordinate planes. [5]
- 8. Apply Gauss' divergence theorem to evaluate $\iint_{s} \vec{F} \cdot \vec{n} \, ds$ where

 $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}$ and 's' is the surface the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a. [5]

[5]

9. Find the Laplace transform of:	[2+3]
i) $tSin^2 3t$ ii) $\frac{Sin2t}{t}$	[2+3]
10. Find the inverse Laplace transform of:	[2.2]
i) $\frac{1}{s^2 - 3s + 2}$	
ii) $\frac{1}{s(s+1)^3}$	[5]
11. Apply Laplace transform to solve the differential equation:	[2]
$y''+2y'+5y = e^{-t} \sin t$, $x(0) = 0, x'(0) = 1$	
12. Find a Fourier series to represent $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$. Hence show that	
$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$	[5]
13. Develop $f(x) = sin\left(\frac{\pi x}{l}\right)$ in half range Cosine Series in the range $0 < x < l$.	[5]
14. Graphically maximize,	[5]

[10]

 $Z = 7x_1 + 10x_2$ Subject to constraints, $3x_1 + x_2 \le 9$ $x_1 + 2x_2 \le 8$ $x_1 \ge 0, x_2 \ge 0$

15. Solve the following LPP using simplex method.

Maximize: $P = 50x_1 + 80x_2$ Subject to: $x_1 + 2x_2 \le 32$ $3x_1 + 4x_2 \le 84$ $x_1 \ge 0, x_2 \ge 0$

	01 TRIBHUVAN UNIVERSITY	Exam.		Regular	
	INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
2	amination Control Division	Programme	All (Excep B Arch)	Pass Marks	32
	2071 Chaitra	Year / Part		Time	3 hrs.
		·			
	Subject: - Enginee	ring Mathem	atics III (SH50	01)	
1111	Candidates are required to give their ans Attempt <u>All</u> questions. The figures in the margin indicate <u>Full</u> . Assume suitable data if necessary.	swers in their o <u>Marks</u> .	wn words as far	as practicable	
•	Using the properties, evaluate the determ	ninant:	•		
	$1 a a^2 a^3 + bcd$	- 			
	$1 b b^2 b^3 + cda$				
	$1 c c^2 c^3 + abd$		· · ·		
	$1 d d^2 d^3 + abc$				
	Prove that every square matrix can unio	quely be expres	ssed as the sum	of a symmetr	ic and a
	skew symmetric matrix.				
	Test the consistency of the system:	•			
	x-6y-z=10, 2x-2y+3z=10, 3	x - 8y + 2z = 20) ·		
	And solve completely, if found consi	istent.	•		
		(2	2 1)		
	Find the eigen values and eigenvecters o	f the matrix $\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix}$.		
	Using the line integral, compute the work	kdone by the fo	orce		******* ***
	$\vec{F} = (2x - y + 2z)\vec{i} + (x + y - z)\vec{j} + (3z)\vec{j}$	$(-2y-5z)\vec{k}$			
	when it moves once around a circle	$x^{2} + y^{2} = 4; z =$	0		
	State and prove Green's Theorem in plan	e.			
	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)$ lines $x = \pm a, y = 0, y = b$.	$\vec{i} - 2xy \vec{j}$ taker	around the rec	tangle bounde	d by the
	Evaluate $\iint \vec{F} \cdot \vec{n}$ ds where $\vec{F} = (2xy + z)$	$\vec{v} \rightarrow \vec{v}$	→ 3v)K hy Gauss	divergence	hearem
		J J (AT.	Synt by Gauss	uvergence u	icoreni,
	where S is surface of the plane $2x + 2y + 2$	z = 6 in the fir	st octant hound	no the volume	V
	where S is surface of the plane $2x + 2y +$ Find the Laplace transform of the following	z=6 in the firm	st octant boundi	ng the volume	۷. ۲۵ ج

10. Find the inverse Laplace transform of :

a)
$$\frac{1}{S(S+1)}$$

b) $\frac{S^2}{(S^2+b^2)^2}$

1.1. Solve the differential equation $y''+2y'+5y=e^{-t}\sin t$, y(0)=0, y'(0)=1, by using Laplace χ' transform transform. [5] $\sqrt{2}$. Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$. [5] < 13. Obtain half range sine series for the function $f(x) = x - x^2$ for 0 < x < 1. [5] 14. Graphically maximize and minimize [5] z = 9x + 40y subjected to the constraints $y - x \ge 1, y - x \le 3, 2 \le x \le 5$ [10]

15. Solve the following Linear Programming Problem by Simplex method:

Maximize, $P = 20x_2 - 5x_1$

Subjected to, $10x_2 - 2x_1 \le 5$

 $2x_1 + 5x_2 \le 10$ and $x_1, x_2 \ge 0$

[2.5×2]

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING **Examination Control Division** 2070 Chaitra

Exam.	Re		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

Г

17

Subject: - Mathematics III (SH501)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- 1. Using the properties of determinant prove

 $\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2 a b c (a+b+c)^3$

2. Prove that $(AB)^{T} = B^{T}A^{T}$ where A is the matrix of size m×p and B is the matrix of size p×n [5]

3.	Find the rank of the following matrix by reducing normal form.	1 2 3	1 0 3	-2 1 -3 -3	1 1 2 3	[[5]
4.	Find the eigen values and eigen vectors of the following matrix.	2 0 0	0 2 0	$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$	ב	-	5]

- 5. Prove that the line intergral $\int_{A}^{B \rightarrow r} \vec{r}$ is independent of the path joining any two points A and B in a region if $\int_{c} \vec{F} \cdot d\vec{r} = 0$ for any simple closed curve C in the region.
- 6. Evaluate $\iint_{S} \vec{F} \cdot \vec{n}$ ds where $\vec{F} = x^{2}\vec{i} + y^{2}\vec{j} + z^{2}\vec{k}$ and S is the finite plane x + y + z = 1[5]

OR

- Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$ where S is the surface of sphere $x^{2} + y^{2} + z^{2} = 1$ in the first octant.
- 7. Evaluate, $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = x \vec{i} y \vec{j} + (z^2 1) \vec{k}$ where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and z = 1

[5]

{s]

[5]

- 8. Verify the stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper part of the sphere $x^2 + y^2 + z^2 = a^2C$ is its boundary.
- 9. Find the Laplace transform of (a) $t^2 \sin zt$ and (b) $\frac{1-e^t}{t}$ [2.5×2]

[5]

[5]

[10]

- 10. Find the inverse Laplace transform of (a) $\frac{2s+3}{s^2+5s-6}$ (b) $\frac{s^3}{s^4-a^4}$ [2.5×2]
- 11. Solve the following differential equation by using Laplace transform[5]y''+y'-2y = x, y(0) = 1, y'(0) = 0
- 12. Obtain the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$ and hence prove that

$$\sum \frac{1}{x^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{6}$$
[5]

- 13. Obtain half range sine series for $f(x) = \pi x x^2$ in $(0, \pi)$ [5]
- 14. Graphically minimize $z = 4x_1 + 3x_2 + x_3$

Subject to $x_1 + 2x_2 + 4x_3 \ge 12$

$$3x_1 + 2x_2 + x_3 \ge 8$$
 and $x_1, x_2, x_3 \ge 0$

15. Minimize $z = 8x_1 + 9x_2$

Subject to $x_1 + 3x_2 \ge 4$

 $2x_1 + x_2 \ge 5$ with $x_1, x_2 \ge 0$

INSTITUTE OF ENGINEERING	val	DD		
	VCI	BE	Full Marks	80
Examination Control Division. Pr	ogramme	All (Except B. Arch.)	Pass Marks	32
2069 Ashad Ye	ar / Part	П/І	Time	3 hrs.
Subject: - Engineering N	/athemati	ee III <i>(SH 501</i>		
. Subject Englicering IV	lauremae		, 	
 Candidates are required to give their answer Attempt All questions 	's in their of	wn words as fai	as practicable	•
 ✓ The figures in the margin indicate <u>Full Mar</u> 	• <u>ks</u> .			
✓ Assume suitable data if necessary.				
I Find the value of the determinant:				
$1 a a^2$	$a^3 + bcd$			
$1 b b^2$	$b^3 + cda$			
$\begin{vmatrix} 1 & c & c^2 \\ c & c^2 & c^2 \end{vmatrix}$	$c^{3} + dab$			
tin and an	d'+abc			
2. Prove that every square matrix can be uniqu	ely express	sed as the sum	of a symmetric	c and
a skew-symmetric matrices.				
$\begin{vmatrix} 1 & 3 & -2 & 1 \end{vmatrix}$				
3. Find the rank of matrix: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \end{bmatrix}$ red	lucing to ec	helon form.		
[]]]		_		
	1 3	7		
4. Verify Cayley-Ilamiltan theorem for the matr	rix: 4 2	3.		
		1]		нана. 1997 — Приланана 1997 — Прилананананананананананананананананананан
5. Find the Laplace transforms of: (a) $te^{-t}sint$ (b)	$e^{at} - \cos(t)$	5t		1
	ť			
6. If $L[f(t)]=F(s)$, then prove that $L[f'(t)]=SF(s)$)—f(o).]
\mathcal{Y} . Use Laplace transform to solve: $x''+2x'+5x=0$	e ^{-t} sint give	n x(0)=0; x'(0)	=1.	[
8. Obtain the Fourier series for $f(x)=x^3$ in the in	terval –π≤x	⊠π.	•	· · · · [
9. Obtain half-range sine series for e^x in $(0, 1)$.				[
10. Maximize $z=2x_1+3x_2$ subject to constraints x	$1-x_2 \le 2, x_1+$	$x_2 \ge 4$ and x_1, x_2	≥0 graphically	• [
11. Solve the linear programming problems by si	mplex meth	hod constructin	g the duality	[1
$Minimize Z = 3x_1 + 2x_2$	an a			
Subject to $2x_1+4x_2 \ge 10$				
$4x_1+2x_2 \ge 10$ x_2 \ge 4 and x_1, x_2 \ge 0				N

11

12. Prove that $\vec{F} = (2xz^3 + 6y)\vec{i} + (6x-2yz)\vec{j} + (3x^2z^2-y^2)\vec{k}$ is conservative vector field and find its scalar potential function.	[5]
13. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = x^2 \cdot \vec{i} + y^2 \cdot \vec{j} + z^2 \cdot \vec{k}$ and S is the finite plane $x+y+z=1$	•
between the co-ordinate planes.	[5]
14. Using Green's theorem, find the area of the hypocycloid $\frac{x^{2/3}}{a^{2/3}} + \frac{y^{2/3}}{b^{2/3}} = 1$.	[5]
15. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 2x \vec{i} + 3y \vec{j} + 4z \vec{k}$ and S is the surface of sphere $x^2 + y^2 + z^2 = 1$	
by Gauss divergence theorem.	[5]
OR	•
Verify Stoke's theorem for $\vec{F} = 2v\vec{i} + 3x\vec{j} - z^2\vec{k}$ where S is the upper half of the sphere	an An An Ann
$x^2+y^2+z^2=9$ and 'C' is its boundary.	[5]

. 02	TRIBHUVAN UNIVERSITY
INS	TITUTE OF ENGINEERING
Exam	ination Control Division

2069 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	Π/Ι	Time	3 hrs.

[5]

[5]

[5]

[5]

[2.5×2]

Subject: - Engineering Mathematics III (SH501)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate **Full Marks**.
- Assume suitable data if necessary.

	a ²	$a^2-(b-c)^2$	bc		
1. Find the value of the determinant	b ²	$b^2 - (c-a)^2$	ca		[5]
	c ²	$c^2 - (a - b)^2$	ab		

2. Show that the matrix $B^{\theta}AB$ is Hermitian or skew-Hermittian according as A is Hermitian and skew- Hermitian. [5]

	0	1	3.	ð		
Find the rank of the matrix	4	2	6	-1	reducing this into the triangular form	[5]
5. Find the fank of the matrix	10	3	9	7	reducing this into the triangular form.	[2]
	[16	4	12	15		

4. Obtain the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and verify that it is satisfied by A.

- 5. Evaluate $\int \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ along the closed curve C bounded by $y^2 = x$ and $x^2 = y$
- 6. Find the value of the normal surface integral $\iint_{K} \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = x \, \vec{i} y \, \vec{j} + (z^2 1) \vec{k}$, where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ between the planes Z = 0 and Z = 1.

7. Using Green's theorem, find the area of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

8. Verify stoke's theorem for $\vec{F} = 2y\vec{i} + 3x\vec{j} - z^2\vec{k}$ where S is the upper half of the sphere $x^{2} + y^{2} + z^{2} = 9$ and C is its boundary. [5]

OR

Evaluate the volume intergral $\iiint \vec{F} dv$, where V is the region bounded by the surface $x = 0, y = 0, y = 6, z = x^2, z = 4$ and $\vec{F} = 2xz \vec{i} - x \vec{j} + y^2 \vec{k}$

- 9. Find the Laplace transforms of the following functions a) $t e^{-4t} \sin 3t$ $\cos at - \cos bt$
 - b)

- 10. State and prove the second shifting theorem of the Laplace transform. [5] [5]
- 11. Solve the following differential equation using Laplace transform.

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = x \text{ given } y(0) = 1, y'(0) = 0$$

12. Obtain the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$ and hence show that π^2 ∇^{1} 1 1 1

$$\sum \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi}{6}$$
 [5]

[5]

[5]

[10]

13. Express f(x) = x as a half-range sine series in 0 < x < 2

14. Maximize $Z = 4x_1 + 5x_2$ subject to constraints

$$2x_1 + 5x_2 \le 25$$

$$6x_1 + 5x_2 \le 45$$

$$x_1 \ge 0 \text{ and } x_2 \ge 0$$

$$QX Y = 0$$

$$QX = 0$$

graphically

15. Solve the following linear programming problem using the simplex method.

Maximize $P = 50x_1 + 80x_2$ Subject to $x_1 + 2x_2 \le 32$ $3x_1+4x_2\leq 84$ $x_1, x_2 \ge 0$

02 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE, BEL, BEX, BCT, BME, BIE, B. AGRI.	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

2068 Chaitra

Subject: - Engineering Mathematics III (SH 501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- Assume suitable data if necessary.

		a	b	c	2	$2bc - a^2$	c ²	b ²		•	: • •	
1.	Prove that:	ь	c	a	=	c ²	$2ac - b^2$	a ²	$=(a^{3}+b^{3}+b^{3})$	$-c^3 - 3abc)^2$.		[5]
	· •	c	а	b		b ²	a ² .	$2ab - c^2$			•	·

2 <u>.</u>	Define Hermition and Skew Hermition matrix. Show that every square matrix can be uniquely expressed as the sum of a Hermition and a skew Hermition.	[5]
3.	For what value of λ the equation $x + y + z = 1$, $x + 4y + 10z = \lambda^2$ and $x + 2y + 4z = \lambda$ have a solution? Solve them completely in each case.	[5]
÷	3 - 4	

4. Find the eigen values and eigen vectors of $A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$ [5]

5. Evaluate
$$\int_{C} \vec{F} \cdot d\vec{r}$$
, Where C: $x^2 = y$ and $y^2 = x$ and $\vec{F} = (x-y)\vec{i} + (x+y)\vec{j}$. [5]

- 6. State and prove Green theorem in a plane. [5]
 7. Verify Guess divergence theorem for F = x² i + 3 j + yz k. Taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z= 0, z = 1. [5]
- 8. Find the Laplace transform of the given function (i) t^2 sint (ii) cosat sinhat. [5]
- 9. Evaluate $\iint_{s} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 3\vec{i} + x\vec{j} yz\vec{k}$ and s is the surface of the cylinder $x^2 + y^2 =$
- 9 included in the first octant between the plane z = 0, z = 4. [5]
- 10. Find the inverse Laplace transform: (a) $\frac{1}{(S-2)(S+4)}$ (b) $\log\left(\frac{s^2+a^2}{s^2}\right)$ [5]
- 11. Solve the equation using Laplace transform $y'' \neq 4y' + 3y = t$, t > 0 y(0) = 0, y'(0) = 1. [5]

deduce $\frac{\pi}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$	[5]
13. Obtain the half Range Sine Series $f(x) = ex$ in $0 < x < 1$.	[5]
OR	
Obtain the Fourier series for $f(x) = x - x^2$ where $-1 < x < 1$ as a Fourier series of j	period 2.
14. Solve the following by using the simplex method:	[7.5]
Maximize $P = 15x_1 + 10 x_2$, Subject to $2x_1 + x_2 \le 10$, $x_1 + 3x_2 \le 10$, $x_1, x_2 \ge 0$.	
15. Solve by using the dual method:	[7.5]
Minimize $C = 21x_1 + 50x_2$, Subject to $2x_1 + 5x_2 \le 12$, $3x_1 + 7x_2 \le 17$, $x_1, x_2 \ge 0$.	
UK	

 $x_1 + x_2 \le 10,$ $-x_1 + x_2 \ge 2,$ $x_1, x_2 \ge 0.$

02 TRIBHUVAN UNIVERSITY	Exam.	R	egular / Back	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
xamination Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
2068 Baishakh	Year / Part	II / I	Time	3 hrs.
				- -
Subject: - Engin	eering Mathe	matics III	1112 ¹ 1111 ¹ 111111111111111111111111	
 Candidates are required to give their and Attempt <u>All</u> questions. The figures in the margin indicate <u>Full</u> Assume suitable data if necessary. 	swers in their ov <u>Marks</u> .	wn words as fa	r as practicable	
. Using the properties of determinant pro	ve that:			· ·
				· · .
$\begin{vmatrix} 1 & y & 1 & x \\ 1 & x & 1 & y \end{vmatrix} = (x + y + 2)(x - y)^{2}(x - y$	(x+y-2)			
	• •			· -1
. If A and B are two non singular matrice	es of the same o	rder, prove tha	t(AB) = B.	A .
		1 2	1 2	
. Find the rank of the following matrix re	ducing to norm	al form $\begin{vmatrix} 1 & 3 \\ 0 \end{vmatrix}$	2 2	
5	Ŭ	2 4	3 4	•
		3 7	4 6	
	· [2 - 2 2		
. Find the eigen values and eigen vectors	of the matrix	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}.$	а 1910 г. – С	
Find the Laplace transform of the follow	wing functions:			
	o ^{at} cost	5+		
a) $te^{-3t}\cos 2t$	b) $\frac{e^{-\cos t}}{t}$	<u> </u>		
Find the inverse Laplace transform of t	he following fu	nctions:		
	1	•		•
a) $\frac{1}{(s-2)(s+2)^2}$	b) $\frac{1}{s^2(s+2)}$		· · · · · · · · · · · · · · · · · · ·	•
$\sqrt{2} = \sqrt{2}$	$D + 3 y = e^{-1} y$	here $\mathbf{v}(0) = \mathbf{v}'(0)$	(1) = 1	
$\frac{1}{2} = \frac{1}{2} $	D + J X = C, W	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	0) -1.	•
5. Obtain a nouncer series for $I(x) = x^2 \ln x$	the interval $-\pi$:	$\geq X \geq \pi$.	amus 1 0 1	
7. Find the half range sine series for the fi	unction $f(\mathbf{x}) = \mathbf{x}$	-x in the int	$erval \cup < x < 1$.	i i se
10. Maximize $Z = x_1 + 1.5 x_2$ subject to co	nstraints			-
$2x_1 + 2x_2 \le 160$	•			. ·
$x_1 + 2x_2 \ge 120$ $4x_1 + 2x_2 \le 280$				
		A state of the second sec		

11. Solve the following linear programming problems by simplex method

 $\begin{array}{l} Maximize \ Z = 15 x_1 + 10 x_2 \\ Subject \ to \ 2 x_1 + 2 x_2 \leq 10 \\ x_1 + 3 x_2 \leq 10 \ and \ x_1, \ x_2 \geq 0 \end{array}$

12. Show that the vector field $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is irrotational. Find the sector function $\varphi(x, y, z)$ such that $\vec{F} = \nabla \varphi$.

[10]

[5]

[5]

[5]

[5]

- 13. If S be the part of the surface $Z = 9 x^2 y^2$ with $Z \ge 0$ and $\vec{F} = 3x \vec{i} + 3y \vec{j} + Z\vec{k}$, find the flux of F through S.
- 14. State and prove that Green's theorem in the plane.
- 15. Evaluate by Stoke's theorem:

$$\int (e^{x}dx + 2ydy - dz)$$

Where c is the curve: $x^2 + y^2 = 4$, z = 2.

OR

Verify Gauss divergence theorem for the vector function $\vec{F} = x^2 \hat{\vec{i}} + z \hat{\vec{j}} + y z \hat{\vec{k}}$, taken over the unit cube bounded by the planes: x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

2067 Ashadh

Exam.	Regular/Back			
Level	BE	Full Marks	80	
Programme	All (Except B.Arch.)	Pass Marks	32	
Year / Part	Π/Ι	Time	3 hrs.	

.

Subject: -	Mathematics I	Ш
------------	---------------	---

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

Attempt <u>All</u> questions.

<u>All</u> questions carry equal marks.

✓ Assume suitable data if necessary.

1. Using the properties of determinant prove:

$a^{2} + 1$	ba	ca	da	
ab	b ² +1	cb	db	$-a^2 + b^2 + a^2 + d^2 + 1$
ac	bc	$c^{2} + 1$	dc -	
ad	bd	cd	$d^{2} + 1$	

- 2. Show that every square matrix can be uniquely expressed as the sum of hermitian and a skew-hermitian matrix.
- 3. Reduce to normal form and find the rank of the matrix:

4. Find the eigen values and eigne vectors of the matrix

 $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$

a) coshat sin at

5. Find the Laplace transform of:

b) $\frac{\cos 2t - \cos 3t}{\cos 2t - \cos 3t}$

b) _____t

6. Find the inverse Laplace transform of:

a)
$$\frac{1}{s^2(s^2+a^2)}$$
 b) $\log \frac{s+1}{s-1}$

7. State and prove the integral theorem of the Laplace transform.

8. Solve the following differential equation using the Laplace transform.

$$y''' + 2y'' - y' - 2y = 0$$
 where $y(0) = y'(0) = 0$ and $y''(0) = 6$

9. Find a Fourier series to represent $x - x^2$ from $x - z^2$. Hence show that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

- 10. Express f(x) = x as a cosine half range series in 0 < x < 2.
- 11. The acceleration of a moving particle at any time t is given by $\frac{d^{2}\vec{r}}{dt^{2}} = 12\cos 2t\hat{i} - 8\sin 2t\hat{j} + 16t\hat{k}.$ Find the velocity \vec{v} and displacement \vec{r} at anytime t if

t = 0, $\overrightarrow{v} = 0$ and $\overrightarrow{r} = 0$.

- 12. Find the angle between the normals to the surface $xy = z^2$ at the points (1,4,2) and (-3,-3,3)
- 13. Find the work done in moving a particle once round the circle $x^2 + y^2 = 9$, z = 0 under the force field \vec{F} given by $\vec{F} = (2x y + z)\vec{i} + (x + y z^2)\vec{j} + (3x 2y + 4z)\vec{k}$.
- 14. Evaluate $\iint_{s} \vec{F} \cdot \vec{n}$ ds where s is the upper side of triangle with vertices (1,0,0), (0,1,0),

(0,0,1) where
$$\vec{F} = (x-2z)\vec{i} + (x+3y+z)\vec{j} + (5x+y)\vec{k}$$
.

- 15. State Green's theorem in a plane. Using Green's theorem find the area of $x^{2/3} + y^{2/3} = a^{2/3}$.
- 16. Verify Stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where s is the upper part of the sphere $x^2 + y^2 + z^2 = a^2$ and c is its boundary.

OR

Verify Gauss theorem for $\vec{F} = y\vec{i} + x\vec{j} + z^2\vec{k}$ over the region bounded by $x^2 + y^2 = a^2$, z = 0 and z = h.

04 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

2067 Magh ·

Exam.	Back		
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	II/I	Time	3 hrs.

Subject: - Mathematics III

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt <u>All</u> questions.

<u>All</u> questions carry equal marks.

Assume suitable data if necessary.

- 1. Show that $\begin{vmatrix} a & b & b & b \\ a & b & a & a \\ a & a & b & a \\ b & b & b & a \end{vmatrix} = -(b-a)^4.$
- 2. If P and Q are two orthogonal matrices of the same order, prove that their product is also orthogonal.

		1	-1	2	- 3	
			1	0	2	
3. Reducing to normal form, find the rank of matrix				0	4	•
		0	1	~0	2	

- 4. Find the eigen values and eigen vectors of the matrix $\begin{vmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{vmatrix}$.
- 5. Find a Fourier series for $f(x) = x^3$, $-\pi < x < \pi$.
- 6. Find the half range sine series for the function $f(x) = e^x$ for $0 < x < \pi$.
- 7. Find the Laplace transform of
 - a) $t^2 cosat$
 - b) $t^{3}e^{-3t}$
- 8. Find the Inverse Laplace transform of

a)
$$\frac{s}{(s-3)(s^2+4)}$$

b) $\log \frac{s(s+1)}{(s^2+4)}$

9. If $L{f(t)} = F(s)$, then prove $L{e^{at} f(t)} = F(s - a)$.

10. Use the Laplace transform to solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}$, $y(0) = y^1(0) = 1$.

- 11. The position vector of a moving particle at any time t is given by $\vec{r} = (t^2 + 1)\vec{i} + (4t 3)\vec{j} + (2t^2 6)\vec{k}$. Find the velocity and acceleration at t = 1. Also find their magnitudes.
- 12. Define divergence and curl of \vec{V} . Prove that $\operatorname{div}(\operatorname{Curl} \vec{V}) = 0$.

11. S.V.S.

- 13. Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = Z \vec{i} + x \vec{j} + y \vec{k}$ and C is the arc of curve, $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- 14. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = x \, \vec{i} + y \, \vec{j} + z \, \vec{k}$ and S is the outside of the lateral surface of circular cylinder, $x^2 + y^2 = a^2$ between planes z = 0 and z = 4.

15. Use Green's theorem to find the area of ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

16. Verify Stoke's theorem for $\vec{F} = x \vec{i} + z^2 \vec{j} + y^2 \vec{k}$ over the plane surface x + y + z = 1 lying in first octant.

OR

Verify Gauss's theorem for $\vec{F} = 4x \vec{i} - 2y^2 \vec{j} + z^2 \vec{k}$ taken over the region bounded by $x^2+y^2 = 4$, z = 0 and z = 3.