25 G TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING **Examination Control Division** 2075 Bhadra

Exam.	anter in the second			
Level	BE	Full Marks	80	
Programme	BEX, BCT	Pass Marks	32	
Year / Part	IV/II	Time	3 hrs.	

Subject: - Optical Fiber Communication (Elective II) (EX76501)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All questions.</u>
 ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

1.	a)	Outline the advantages of optical fiber communication system and it's applications. Explain the evolution of the Optical Communication technology.	[2+2+3]
	b)	What are the different types of Optical fiber used in the communication system?	[4]
2.	a)	Explain Goos Haenchen Shift. Derivation and explain the significance of the wave equation for a Dielectric slab waveguide of infinite depth consisting of a slab of dielectric material of width 'd' of refractive index, η_1 embedded in a material having refractive index, η_2 .	f
	b)	Calculate the normalized frequency at 820 nm for a step-index fibre having 25 μ m core radius, n ₁ equal to 1.48 and n ₂ equal to 1.46.	
		 (i) How many modes propagate in this fibre at 820 nm? (ii) How many modes propagate in this fibre at 1320 nm? (iii)What percentage of this optical power flows in the cladding in each case? 	[3]
3.	a)	What is the significance of profile parameter in graded index fiber?	[2]
	b)	Derive and explain the relation between bandwidth and numerical aperture in a Multi mode step index fiber due to dispersion.	
4.	a)	What is optical modulation? Compare D-IM and Subcarrier IM.	[2+4]
	b)	Estimate the external power efficiency of a GaAs planar LED when the transmission factor of the GaAs-air interface is 0.68 and the internally generated optical power is 30% of the electric power supplied. The refractive index of GaAs may be taken as 3.6.	[4]
5.	a)	Explain Optical Couplers and it's types? How FBT Technology is used to manufacture Star Coupler?	[3+3]
	b)	A step index fiber with a $200\mu m$ core diameter is butt jointed. The joint which is index matched has a lateral offset of $10\mu m$ but no longitudinal or angular misalignment. Determine the loss due to this type of misalignment.	[3]
	c) '	What are the performance parameters of a good optical detectors.	[3]
6.	a)	For Silica the fictive tempersature (T _f) is 1400K, the isothermal compressibility (β_T) is 6.8*10 ⁻¹¹ m ² /N, and the photo-elastic coefficient is 0.286. Estimate the scattering loss at 1.3µm wavelength where n = 1.45.	[3]
	b)	What is Optical Amplifiers? Explain the working principle of EDFA. Using energy level diagram explain the significance of metastable level.	[2+5]

- 7. a) Explain the working principal of Distributed feedback Laser. Why it is preferred by the telecom companies? [3+2]
 - b) Explain the importance of link budget analysis in optical communication system. Define Dispersion penalty. [2+2]
- 8. a) Find the total system loss and excess margin where 9 splices and 2 connectors are used.

Fiber Cable Loss	Splice Loss	Connector Loss	Safety Margin
3-dB/km	0.3 dB/ splice	1 dB/connector	7 dB

A typical operating power budget over 8-km of multimode graded index fiber at wavelength of 0.85-µm, mean power launched from laser transmitter is -4.5dB and APD receiver sensitivity is -48 dBm.

 b) Explain different components of FTTH network. What are the different standards of Passive Optical Network? [3+2]

[6]

35G . TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING **Examination Control Division** 2074 Bhadra

Exam.		Regular	Re Sugala
Level	BE	Full Marks	80
Programme	BEX	Pass Marks	32
Year / Part	IV / II	Time	3 hrs

Subject: - Optical Fiber Communication (Elective II) (EX76501)

- Candidates are required to give their answers in their own words as far as practicable. \checkmark
- Attempt All questions. \checkmark

acceptable?

- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

	1.	a)	Explain different components of optical fiber communication system with block diagram and list the advantages of optical fiber communication.	
		b)	Explain in detail about cutoff wavelength and normalized frequency? Also write the significance of each.	
2	2. 4	a)	What is the difference between phase velocity and group velocity? Elaborate with examples.	
			Find the maximum diameter of a signal mode fiber designed to carry a signal of wavelength 1.3 μ m if the index of refraction of the core of the fiber is 1.55 and the index of refraction of the cladding of the fiber is 1.52.	
3	. a	ι)	Describe the major causes of attenuation in optical fiber. Illustrate the transparent windows in optical fiber with major peak transparent wavelength in fiber. Describe its impact in transmission systems	[3]
	b)	Compare meridional rays and skew rays with necessary sketch.	+2+2]
4.	a)	Explain Modulation bandwidth in terms of electrical and optical bandwidth.	[4]
	b)	Explain quantum efficiency and responsively along with their mathematical relationship.	[4]
5.	a))	What are the property of light which are used in optical modulation? Explain in detail about direct intensity modulation.	[6]
	b))]	Explain in detail about the procedure of fusion splicing? What are the advantages and lisadvantages associated with fusion splicing?	[2+5]
6.	a)	1	Write the difference between linear and non-linear scattering. Also explain its type.	[4+2]
	b)	ł	A glass fiber has the material dispersion parameter value 98.1 psnm ⁻¹ km ⁻¹ . Estimate	[5]
		. *	he pulse broadening per kilometer for the fiber operating at 0.85 μ m wave length given that relative spectral width of injection laser ($6\lambda/\lambda$) is 0.0012.	
7.	a)	Ŀ	Explain in detail about Dense Wave Division Multiplexing technology. Write the dvantages.	[4]
	b)	A e tł	A 15 km optical fiber link uses fiber with a loss of 1.5dB km ⁻¹ . The fiber is jointed very kilometer with connectors which give an attenuation of 0.8dB each. Determine minimum mean optical power which must be launched into the fiber in order to haintain a mean optical power level of $0.3\mu w$ at detector.	[6]
	ma ma +10	oea xii rgi dB	ptical fiber system is to operate at 622 Mbps over a distance of 65 km without ters. Fiber with a loss of 0.23 dB/km and a dispersion of 5.5 ps/km is available in num lengths of 1 km. The fusion spice loss is $0.035dB/splice$ and repair power in is 5 dB. If the receiver sensitivity is -28 dBm and the transmitter output power is m, determine the maximum allowable attenuation which can be tolerated during lation. If a system upgrade to operation at 1.2 Chief (as a set of the set o	[4]

installation. If a system upgrade to operation at 1.2 Gbits/sec is required, is the fiber link

35 G TRIBHUVAN UNIVERSITY		
INSTITUTE OF ENGINEERING		
Examination Control Division		
2073 Magh	Γ	

Exam.	n. New Back (2066 & Later Batc			
Level	BE	Full Marks	80	
Programme	BCT, BEX	Pass Marks	32	
Year / Part	IV / II	Time	3 hrs.	

[3]

[1+2]

[2+7]

[2]

Subject: - Optical Fiber Communication (Elective II) (EX76501)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. Explain different components of an optical fiber communication system with a block diagram.
- 2. What is a material absorption loss? What are the causes of absorption of light in optical fiber?
- 3. Explain Goos-Haenchen shift. For a TE mode wave propagation, derive the wave equation for a Dielectric slab waveguide of infinite depth consisting of a slab of dielectric material of width 'd' of refractive index, η_1 embedded in a material having refractive index, η_2 .
- 4. A multimode step index fiber with a core diameter of 80 μ m and a relative index difference of 1.5% is operating at a wavelength of 0.85 μ m. If the core refractive index is 1.48. Determine
 - a) The normalized frequency for the fiber
 - b) The number of guided modes

5.	With a suitable example explain the effect of dispersion during optical signal propagation and how it can be reduced?	[6]
6.	Derive the expression of Numerical Aperture of meridional-ray in terms of refractive index of core and cladding.	[4]
7.	Explain a subcarrier intensity modulation.	[5]
8.	What is a Misalignment Loss? Explain the causes of misalignment loss.	[1+2]
9.	In which condition mode LED act as laser? Explain it.	[3]
10.	What are the types of LED? Which types of LED used in optical fiber communication? Explain it briefly.	[4]
11.	Explain about benefit and drawback of an avalanche photodiode.	[3]
12.	A photodiode has a quantum efficiency of 65% when photons of energy 1.5×10^{-19} J are incident upon it.	
	a) At what wavelength is the photodiode operating?b) Calculate the incident optical power required to obtain a photo current of 2.5μA when the photo diode is operating as described above.	[2]
13.	Explain the causes of the insertion loss. What are the problems associated with fusion splicing?	[3+2]

- 14. An optical fiber has a core refractive index of 1.5. Two lengths of the fiber with smooth and perpendicular (to the core axes) end faces are butted together. Assuming the fiber axes are perfectly aligned, calculate the optical loss in dB at the joint (due to Fresnel reflection) when there is a small air gap between the fiber end faces.
- 15. The LED in a silica optical fiber link has arise time of 8ns and a spectral width of 40nm at an operating wavelength of 840nm. The PIN photo detector has a rise time of 10ns. For silica D = 95.2 ps/(nm.km). For a 2.5 Km link, the intermodal dispersion of graded index fiber is 3.5 ns/Km. Calculate the system rise time and data rate that the system can support for NRZ coding and RZ coding.

Also Calculate data rate for NRZ and RZ coding when Single mode fiber with D = 95.2 ps/(nm.km) and LASER having spectral width 1 nm and a rise time of 8ns is used in the same system.

- 16. Explain the amplification process based on stimulated emission. What are the advantages of Erbium Doped Fiber Amplifier?
- 17. Three clients traffic: STM-16 from SDH equipment, 10 Gbps internet traffic from router and 1 Gbps voice traffic from MSC needs to be carried from Kathmandu to Biratnagar. Only one pair of optical fiber is available between these cities. Explain how the traffic can be carried in the given scenario using DWDM technology with necessary block diagram. Assume the channel value having channel spacing of 100 GHz.
- 18. What are the advantages and enhanced management capabilities of Synchronous Digital Hierarchy?

[4]

[7]

[3]

[4+3]

[3+2]

35 G	TRIBHUVAN UNIVERSITY ITUTE OF ENGINEERING			
Exami	nation Control Division			
2073 Bhadra				

WE REAL PROPERTY.	Regular	
BE	Fuli Marks	80
BCT, BEX	Pass Marks	32
	Time	3 hrs.
	BE BCT, BEX IV / II	BCT, BEX Pass Marks

Subject: - Optical Fiber Communication (Elective II) (EX76501)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
 ✓ The figures in the margin indicate <u>Full Marks</u>.
 ✓ Assume suitable data if necessary.

	What are the advantage of optical fiber communication over other medium?	[4]
_1.	a the there is a first and the original	
~.	What are the advantage of optical fiber communications of the set	[4] [2]
3.	State Maxwell's equation for optical propagation.	[2]
4.	The interpretent field in ontical fiber communication?	[4]
5.	the star index fiber has a relative refractive index difference of 1% and core	[5] [4]
6.	What is a fiber dispersion? Explain it.	1.1
7.	A multimode graded index fiber has a refractive index at the core axis of 1.40 with a cladding refractive index of 1.45. The critical radius of curvature which allows large bending losses to occur is 84 µm when the fiber is transmitted light of a particular length Determine the wavelength of the transmitted light.	[5]
	Explain an internal Quantum efficiency and external Quantum efficiency of LED along	[4]
	2. The power generated internally within a double hetero junction LED is 28.4411 if and drive current of 60-mA. Determine the peak emission wavelength from the device when the radiative and non radiative recombination lifetimes of the minority carriers in the active region are equal.	[3]
	to E the optical detection principle of p-n photodiode.	[4]
	11. A given silicon avalanche photodiode has a quantum efficiency of 65% at a wavelengin of 900 nm. If 0.5μ W of optical power produces a multiplied photocurrent of 10μ A. Find the multiplication factor.	[3]
	12. Briefly explain a Direct-Intensity modulation (D-IM).	[5]
	12. Grangers between an optical splice and connector.	LJ.
	 Compare between an optical space Briefly explain structure and principle of operation for the fiber fused biconical taper coupler. 	[6
	15. Explain with principle of different types of optoelectronic integration.	[7

- 16. Explain with principle and neat diagram of digital fiber optic transmission.
- 17. A D-IM analog optical fiber link of length 2 km employs an LED which launches mean optical power of -10 dBm in to multimode optical fiber. The fiber cable exhibits a loss of 3.5 db km⁻¹ with splice losses calculated at 0.7 db km⁻¹. In addition there is a connector loss at the receiver of 1.6 db. The p-i-n photodiode receiver has a sensitivity of -25 dBm
- loss at the receiver of 1.0 db. The p-1-h photonode receiver has a containing of the photonode receiver has a containing the photonode receiver has a cont
 - a) Perform an optical power budget for the system operating under the above conditions and as certain its velocity.
 - b) Estimate any possible increase in link length which may be achieved using an injection laser source which launches mean optical power of 0 dBm in to the fiber cable. In this case the safety margin must be increased to 7 dB.

[9]