TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III/I	Time	3 hrs.

Subject: - Engineering Hydrology (CE 606)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- Semi-log graph is provided.
- ✓ Assume suitable data if necessary.
- 1. a) In a certain catchment, inflow rate into the catchment due to rainfall is given by equation I=2t m³/s. If loss n the catchment is neglected, determine the change is storage in catchment with in 3 hr duration.

b) Justify the uses of Hydrology in Engineering Design.

2. For a station A, the recorded annual 24 hr maximum rainfalls are given below.

Estimate the 24 hr maximum rainfall with return periods of 50 years by using provided semi log graph.

Year	1950	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ppt (cm)	13.0	12.0	7.6	14.3	16.0	9.6	8.0	12.5	11.2	8.9	8.9	7.8	9.0	10.2	8.5	7.5

3. a) Calculate PET for May month by Penman method.

Mean monthly temperature = 20° C Mean RH = 75% Mean Sunshine hoar = 10 hr. Potential Sunshine hour = 13.5 hr. Wind velocity at 2m height = 8 km/hr. Albedo = 0.028 Upper terrestrial solar radiation = 14.4 mm of Hg/day Latitude = 27° ; Longitude = 86° Saturated vapour pressure at 20° C = 11mm of Hg Slope of Saturated vapour pressure = 1.42 mm/°C

b) A storm with a 15.0 cm precipitation produced a direct runoff of 8.7cm. The time distribution of storm is as follows.

Time from start (hr)	1	2	3	4	5	6	7	8
Incremental rainfall in each hr (cm)	0.6	1.35	2.25	3.45	2.7	2.4	1.5	0.75
Estimate the Φ -index of the storm.								[5]

- 4. a) Define catchment. What are the factors affecting runoff from a catchment?
 - b) For the purpose of discharge measurement in a stream by Slope-Area method the following data has been obtained.

	U/S Section	Middle Section	D/S Section
Area (m ²)	105.75	102.63	96.63
Wetted perimeter (m)	64.25	60.20	58.00
Gauge Reading (m)	315.5	-	315.15
Manning's Roughness	0.025	0.027	0.029

Determine the stream discharge for length between U/S and D/S sections as 260 m assuming coefficient of contraction K_e as 0.1.

c) Define shifting control in stage discharge relationship. What are the causes of shifting control? [1+2]

[8]

[1+5]

[8]

[4]

[3]

- 5. a) Define unit hydrographs and explain the uses of hydrograph.
 - b) The ordinates of a 4 hr UH of a basin area of 300 km². Three hundred square km measured at 1-hr internals are 6, 36, 66, 91, 106, 93, 79, 68, 58, 49, 41, 34, 27, 23, 17, 13, 9, 6, 3 and 1.5 m³/s respectively. Obtain the ordinates of a 3 hr UH of the basin using the s-curve technique.
- 6. a) In the time series data of annual peak flood for 75 years, the mean and standard deviations are found to be equal to 5561 m³/s and 1718 m³/s respectively. Using

 $y_n = 0.556$ and $S_n = 1.189$ (for 75 yrs).

- i) Determine the peak flood for 0.4% probability of exceedence by Gumbel's method.
- ii) Compute 90% confidence limits for above floods, using f(c) = 1.6 for 90% confidence level respectively.
- b) Explain the rational method of determining the floods. Also write down its limitations.

7. A drainage Basin has the following characteristics: [6] Area = 110 Km², Time of concentration = 18 h, Storage time constant = 12 h and interisochrones area distribution as below: [6]

Iravel Time (h)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16.19
Inter-isochrone area (km ²)	3	9	20	22	16	18	10	8	10-10

Determine the Clark's 2h-IUH for this catchment.

[4+4]

V.

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2076 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year/Part	III / I	Time	3 hrs.

Subject: - Engineering Hydrology (CE 606)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- Semi-log graph is provided.

✓ Assume suitable data if necessary.

- 1. a) In a certain catchment, inflow rate into the catchment due to rainfall is given by equation I=2t m³/s. If loss n the catchment is neglected, determine the change is storage in catchment with in 3 hr duration.
 - b) Justify the uses of Hydrology in Engineering Design.
- 2. For a station A, the recorded annual 24 hr maximum rainfalls are given below. [8]
 - Estimate the 24 hr maximum rainfall with return periods of 50 years by using provided semi log graph.

Year	1950	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ppt (cm)	13.0	12.0	7.6	14.3	16.0	9.6	8.0	12.5	11.2	8.9	8.9	7.8	9.0	10.2	8.5	7.5

3. a) Calculate PET for May month by Penman method.

Mean monthly temperature = 20° C Mean RH = 75% Meán Sunshine hoar = 10 hr. Potential Sunshine hour = 13.5 hr. Wind velocity at 2m height = 8 km/hr. Albedo = 0.028 Upper terrestrial solar radiation = 14.4 mm of Hg/day Latitude = 27°; Longitude = 86° Saturated vapour pressure at 20°C = 11mm of Hg Slope of Saturated vapour pressure = 1.42 mm/°C

b) A storm with a 15.0 cm precipitation produced a direct runoff of 8.7cm. The time distribution of storm is as follows.

Time from start (hr)	1	2	3	4	5	6	7	8	ľ
Incremental rainfall in each hr (cm)	0.6	1.35	2.25	3.45	2.7	2.4	1.5	0.75	
Estimate the Φ -index of the storm.					•			[:	5]

- 4. a) Define catchment. What are the factors affecting runoff from a catchment?
 - b) For the purpose of discharge measurement in a stream by Slope-Area method the following data has been obtained.

<u>B</u>	U/S Section	Middle Section	D/S Section
Area (m^2)	105.75	102.63	96.63
Wetted perimeter (m)	64.25	60.20	58.00
Gauge Reading (m)	315.5		315.15
Manning's Roughness	0.025	0.027	0.029

Determine the stream discharge for length between U/S and D/S sections as 260 m assuming coefficient of contraction K_e as 0.1.

c) Define shifting control in stage discharge relationship. What are the causes of shifting control?
[1+2]

[8]

[4]

[3]

[8]

[1+5]

5.	a)	Define unit hydrograph	s and ex	cplain tl	he uses	of hydro	ograph.		가 가 가 있다. 2012년 - 111		F 51
	b)	The ordinates of a 4 h measured at 1-hr interna 13, 9, 6, 3 and 1.5 m ³ /s using the s-curve technic	r UH o als are (s respec que.	of a bas 5, 36, 60 ctively.	in area 5, 91, 10 Obtain	of 300)6, 93, 1 the ord	km ² . T 79, 68, 5 inates o	hree hu 58, 49, 4 f a 3 hr	ndred sq 1, 34, 27 UH of t	uare km ', 23, 17, he basin	Г10]
6.	a)	In the time series data o deviations are found to 1	f annua be equa	l peak f l to 556	lood foi 1 m ³ /s :	75 yea and 171	rs, the n 8 m³/s r	nean and espectiv	l standar ely. Usin	d 1g	
		$y_n = 0.556 \text{ and } S_n = 1.1$	89 (for	75 yrs)	•						[4+4]
		 i) Determine the peak method. ii) Compute 90% confi confidence level resp 	flood fo dence li pectivel	or 0.4% imits fo y.	probabi r above	ility of a floods,	exceede	nce by C (c) = 1.6	iumbel's for 90%		
	b)	Explain the rational met	hod of a	determi	ning the	floods	Also	rite dow	m its		
		limitations.			•						[6]
7.	A c Are isoc	trainage Basin has the fol- ea = 110 Km^2 , Time of co- chrones area distribution	lowing oncentra as belo	charact ation = ; w:	teristics 18 h, St	: orage ti	me cons	itant = 1:	2 h and i	nter-	[6]
	Tra	vel Time (h)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18
	Inte	er-isochrone area (km ²)	3	9	20	22	16	18	10	8	4

Inter-isochrone area (km²)3920221618108Determine the Clark's 2h-IUH for this catchment.

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2075 Chaitra

Exam.	Reg	ular / Back	tan darah
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[5+1]

[6+2]

[3]

	Subject: - Engineering Hydrology (CE 606)	
$\checkmark \checkmark \checkmark \checkmark \checkmark$	Candidates are required to give their answers in their own words as far as practicable. Attempt <u>All</u> questions. The figures in the margin indicate <u>Full Marks</u> . <u>A seperate graph paper is provided</u> . Assume suitable data if necessary.	
1.	Explain hydrologic cycle with neat sketches and justify its need in Engineering Hydrology.	[3+2]
2.	The rainfall depth with time during a storm at a station is given below. Compute maximum average intensities of the rainfall for durations 30 minutes, 1hr, 2 hr, and 5hr	[6]

and	plot th	e result	ing into	ensity d	luratior	1 curve	•				,			[6]
Time (hr)	06:00	06:30	07:00	07:30	08:00	08:30	09:00	09:30	10:00	10:30	11:00	11:30	12:00	
Rainfall (mm)	0	6	6	5	8	5	9	. 13	6	4	.3	2	0	

- 3. a) Explain the water budget and energy budget methods for estimation of evaporation. [3+3]
 - b) The mass curve of an isolated storm in a 500ha watershed is as follows:

Time from strat (h)	0	2	4	6	8	10	12	14	16	18	
cumulative rainfall (cm)	0	0.8	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6	

If runoff measured at the outlet is 0.361Mm^3 is baseflow, estimate the ϕ -index of the storm and duration of rainfall excess. Also determine W-index if the other losses in the storm is 0.1 Mm^3 .

- c) Differentiate actual and Potential Evapotranspirations.
- 4. a) Following are the data of gauge and discharge collected at a particular section of the river by stream gauging operation.
 - i) Develop a gauge-discharge relationship for this stream at this section for use in estimating the discharge for a known gauge reading. What is the coefficient of correlation of the derived relationship? Use a =7.5m for the gauge corresponding to zero discharge.
 - ii) Estimate the discharge corresponding to a gauge reading of 10.5m at this gauging station.

Gauge reading (m)	Discharge (m ³ /s)	Gauge reading (m)	Discharge (m ³ /s)
7.65	15	8.48	170
7.7	30	8.98	400
7.77	57	9.30	600
7.8	39	9.5	800
7.9	60	10.5	1500
7.91	100	11.1	2000
. 8.08	150	11.7	2400

b) Calculate the discharge in a stream by using mid-section method from provided data. A current meter is used to measure velocity at 0.6 depth and calibrated as V=0.3N+0.004

Distance from right bank (m)	0	2	4	6	9	12	15	18	20
Depth (m)	0	0.50	1.10	1.90	2.2	1.8	1.1	0.7	0
Number of revolutions	0	80	83	130	121	116	100	90	0
Time (s)	0	170	110	100	100	100	100	90	0

- 5. a) Define storm hydrograph, direct runoff hydrograph and baseflow. Explain the methods to separate base flow strom hydrograph with clear sketches. [3+3]
 - b) Following are the ordinates of hydrograph from a catchment area of 770km² due to 6-hr rainfall. Derive the ordinates of flood hydrograph due to 3.3cm and 5.5cm effective rainfall of duration 12-hr.

t (hr)	0	6	12	18	24	30	36	42	48	54	60	66	72
Discharge (m ³ /s)	40	65	215	360	400	350	270	205	145	100	70	50	40

- 6. a) Explain Rational method of flood predication. Also mention its limitations & uses.
 b) Analysis of the annual flood peak of river of 21 years yielded a mean of 8520m³/s and standard deviation of 3900m³/s. A proposed water control project on this river is to have an expected life of 40 years. The acceptable reliability by the design policy is 85%.
 - i) Using Gumbel's Method recommend the flood discharge for this project. Take $y_n=0.5252$ and $S_n=1.0696$ for 21 years.
 - ii) What would the 80% confidence limit of the above flood if f(c)=1.282 at 80% confidence level.
 - 7. a) What do you understand by flow routing?
 - b) A drainage basin has the following characteristics:

Area = 123 km^2 , time of concentration=14 hr, storage constant=10h and interisochrone area distribution as below:

							the second se			
Travel Time (hr)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	
Inter-isochrone area (km ²)	4	10	21	24	18	20	12	9	5	
Compute the flood hydrogra	nh by	using	2 Clar	k's IU	H.					[6]

Wester in the

[8]

.

[3+3]

[10]

[4+4]

[2]

-

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2076 Ashwin

Exam.		Back	hanna aite tha haile Aite aite aite aite
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year/Part	III/I	Time	3 hrs.

Subject: - Engineering Hydrology (CE 606)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ <u>Semi-log graph is provided.</u>
- ✓ Assume suitable data if necessary.
- 1. a) In a certain catchment, inflow rate into the catchment due to rainfall is given by equation I=2t m³/s. If loss n the catchment is neglected, determine the change is storage in catchment with in 3 hr duration.
 - b) Justify the uses of Hydrology in Engineering Design.
- 2. For a station A, the recorded annual 24 hr maximum rainfalls are given below.

Estimate the 24 hr maximum rainfall with return periods of 50 years by using provided semi log graph.

Year	1950	51	52	-53	54	55	56	57	58	59	60	61	62	63	64	65	ļ
Ppt (cm)	13.0	12.0	7.6	14.3	16.0	9.6	8.0	12.5	11.2	8.9	8.9	7.8	9.0	10.2	8.5	7.5	
a) Calcul	ate PF	T for	Mav	mont	h by	Penm	an m	ethor	ł								

3. a) Calculate PET for May month by Penman method.

Mean monthly temperature = 20° C Mean RH = 75%

Mean Sunshine hoar = 10 hr.

Potential Sunshine hour = 13.5 hr.

Wind velocity at 2m height = 8 km/hr.

Albedo = 0.028

Upper terrestrial solar radiation = 14.4 mm of Hg/day

Latitude = 27° ; Longitude = 86°

```
Saturated vapour pressure at 20^{\circ}C = 11mm of Hg
```

Slope of Saturated vapour pressure = 1.42 mm/°C

b) A storm with a 15.0 cm precipitation produced a direct runoff of 8.7cm. The time distribution of storm is as follows.

Time from start (hr)	1	2	3	4	5	6	7	8	
Incremental rainfall in each hr (cm)	0.6	1.35	2.25	3.45	2.7	2.4	1.5	0.75	
Estimate the Φ -index of the storm.								[5	5]

- 4. a) Define catchment. What are the factors affecting runoff from a catchment?
 - b) For the purpose of discharge measurement in a stream by Slope-Area method the following data has been obtained.

	U/S Section	Middle Section	D/S Section
Area (m ²)	105.75	102.63	96.63
Wetted perimeter (m)	64.25	60.20	58.00
Gauge Reading (m)	315.5	*	315.15
Manning's Roughness	0.025	0.027	0.029

Determine the stream discharge for length between U/S and D/S sections as 260 m assuming coefficient of contraction K_e as 0.1.

c) Define shifting control in stage discharge relationship. What are the causes of shifting control?

[8]

[4]

[3]

[8]

[1+5]

[8]

5.	a) De	fine unit hydrograph	s and ex	plain t	he uses	of hydro	ograph.	a ta ang			[5]
	b) Th me 13, usi	e ordinates of a 4 h asured at 1-hr intern , 9, 6, 3 and 1.5 $m^3/$ ng the s-curve techni	r UH o als are 6 s respec que.	f a bas 5, 36, 60 tively.	in area 6, 91, 10 Obtain	of 300 06, 93, 1 the ord	km ² . T 79, 68, 5 inates o	hree hu 58, 49, 4 f a 3 hr	ndred sq 1, 34, 27 UH of t	uare km 7, 23, 17, he basin	[10]
6.	a) In t dev	the time series data o viations are found to	f annua be equa	l peak f l to 556	lood for 51 m ³ /s a	75 yea and 171	rs, the n 8 m ³ /s r	nean and espectiv	l standar ely. Usir	d 1g	[~~]
	yn	$n = 0.556 \text{ and } S_n = 1.1$	89 (for	75 yrs)	•		•	•			[4+4]
	i) ii)	Determine the peak method. Compute 90% confi confidence level resp	flood fo dence li pectivel	r 0.4% mits fo y.	probabi r above	ility of e floods,	exceeder using f(nce by C c) = 1.6	iumbel's for 90%		[]
	b) Exp	olain the rational met	hod of d	letermi	ning the	floods.	Also w	rite dow	n its		
	lim	itations.			Ū						[6]
7.	A drain Area = isochro	age Basin has the fo 110 Km ² , Time of co nes area distribution	llowing oncentra as below	charact tion = ; v:	teristics: 18 h, Sto	orage ti	me cons	tant = 12	2 h and i	nter-	[6]
	Travel	Time (h)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18
L	Inter-ise	ochrone area (km ²)	3	9	20	22	16	18	10	8	4

Determine the Clark's 2h-IUH for this catchment.

04 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2074 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III/I	Time	3 hrs

Subject: - Engineering Hydrology (CE606)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- \checkmark The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. a) Define hydrology and write on history of hydrometeorology studies in Nepal.
 - b) Describe with a neat sketch the principle of working of a tipping bucket type recording rain gauge. What are its advantages and disadvantages?
 - c) A catchment area has seven rain gauge stations. In a certain month the precipitation record of station D could not be measured due to the failure of instrument. Estimate the missing precipitation of D from the following data available given in the table below.

Stations	A	В	C	D	Е	F	G	
Monthly Ppt (cm)	12	8.5	7.6	-	5.2	8.8	9.7	
Annual normal Ppt (cm)	188	210	152	175	246	270	228	
Mining monthar por (one)								

- 2. a) In a 3.5 hr storm following rates of rainfall were observed in successive 30 min intervals as 4, 4, 12, 8.5, 5, 5, and 8.6 mm/hr respectively. Assuming \$\phi\$-index of 4mm/hr and the initial loss of 1.2 mm; determine the total rainfall, net runoff and W-index.
 - b) Explain the use of a lysimeter in measuring evapotranspiration.
 - c) During a daily routine observation 10.8 litres of water was added to bring the water surface in the evaporation pan to the stipulated level and the nearby raingauge measured 3.6 mm of rainfall. What was the evaporation recorded for the day if the diameter of the pan is 122 cm?
- 3. a) During a high flow water surface elevations of a stream of trapezoidal section with base width of 10m and side slope 2:1 (H:V) were noted at two sections A and B, 10 km apart as below. Find the flow discharge in the stream.

Sections	Elevation of Bed (m)	Water Surface Elevation (m)	Remarks
 A	503.25	505.95	Manning's Constant = 0.025
 B	502.85	504.20	Eddy loss coefficient of 0.30 for expansion and 0.10 for contraction.

b) Write the equation of the rating curve and explain with figure how the stage for zero discharge is determined?

[5]

[6]

[5]

[6]

[5]

[5]

[8]

[6]

4. a) The ordinates of 4 hr unit hydrograph are given below.

Time (hr)	0	2	4	6	8	10	12	14	16	18	20	22	24	
4-br I IH ordinates (m ³ /s)	0	9	12	28	40	52	49	36	29	20	13	10	0	
T III OIII OIUIIIOITE (III)	•			A 1		¥ 6 1	L	infal	1 of	25	8.0	and	9.0	C

The storm has successive 2 hr, 4 hr and 6 hr rainfall of 2.5, 8.0 and 9.0 cm respectively. ϕ -index is of 0.15 cm/hr and base flow of 40m³/s. Determine the 2 hr UH and resulting flood hydrograph from above storm.

[12]

[12]

- b) Annual flood peak flood of a river for 20 years yielded a mean value of 5460 m3/s and the standard deviation of 2950 m³/s, The proposed hydraulic project on this river has an expected life of 35 years and reliability of project is 87%.
 - (i) Using Gumbel's method predict the flood discharge for the project if the value of $y_n = 0.5402$ and $S_n = 1.1285$.
 - (ii) What discharge is to be adopted if the safety factor for flood magnitude is taken as 1.5 and also determine safety margin on this basis.
 - (iii)Calculate the confidence limits at 95% confidence probability f(c) = 1.96
- 5. Route the following hydrograph through a river reach for which K = 12h and X = 0.20. At the start of the inflow flood, the outflow discharge is $10m^3/s$ also find lag of peak and lag attenuation. [10]

های در ا	Time (h)	0	6 12 18	24	30	36	42	48	54	
nder and Norder	Inflow (m ³ /s)	10	20 50 60	55	45	35	27	20	15	

Personal Constant A

2075 Aslawin	
Examination Control Division	ł
INSTITUTE OF ENGINEERING	
04 / TRIBHUVAN UNIVERSITY	

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

	Subject: - Engineering Hydrology (CE606)
~	Candidates are required to give their answers in their own words as far as practicable.
✓	Attempt All questions.
\checkmark	The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

- 1. a) Explain **double mass** curve method for checking a rainfall data for consistency. [6]
 - b) What factors should be considered in selecting a site for stream gauging station.
 - c) The catchment area of a reservoir is 1600 ha. A uniform precipitation of 8 mm/hr for 2 hour was observed on particular day. 55% run off reached the reservoir. A canal carrying a flow of 1m³/s is taken from the reservoir. The rate of evaporation was 0.8 mm/h/m². Assuming seepage loss is 40% of evaporation loss, find the change in the reservoir level for 6 hours, if the water spread of the reservoir was 45ha.
- 2. a) Explain the different methods of determining the average rainfall over a catchment due to a storm.
 - b) Calculate the potential evapotranspiration from an area near Dharan, Sunsari in the month of april by Penmans' formula. The following data are available.

Latitude: 26°-49'N,

Elevation (from msl) : 250.00 m Mean relative humidity: 75% Wind velocity at 2m height: 80 km/day

Mean monthly temperature : 22.5°C, Mean observed sunshine hour: 10 hr

Psychrometric constant : 0.49mm of Hg/°C Reflection coefficient:0.20 e_w : 20.4mm of Hg, A: 1.24mm/°C b = 0.52, H_a = 14.9mm of evaporable water per day

Mean monthly value of possible sunshine hour (N) : 12.7 hours

Nature of sunshine cover: closed ground green crop, where the symbols carry their usual meanings

3. a) The mass curve of an isolated storm over a watershed is given below.

Time from start (hr)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Cumulative rainfall (cm)	0	0.6	1.4	1.9	2.8	3.7	5.4	6.2	7	7.8	8.2

If the storm produced a direct run off of 3.8 cm at the outlet of the watershed, estimate the \emptyset -index of the storm and duration of rainfall excess.

b) The ordinates of a 2-h UH are given below. Derive the ordinates of a 3-h UH by Scurve method.

Time (hr)	0	2	4	6	8	10	12	14	16	18	20	22	24
Ordinates of 2-h UH	0	25	100	160	190	170	110	70	.30	20	15	6	0
(m^{3}/s)													

Calculate the flood discharge of a storm of 3h and 2h rainfall of 8 cm and 7 cm respectively. Consider \emptyset -index 0.3 cm/hr and baseflow 10m³/s.

[6]

[4]

[6]

[6]

[10]

[10]

4. a) Compute the stream discharge with the following data.

Distance from left bank	0	2	4	6	8	10	12
Depth (m)	-	0.9	2.4	2.2	1.0	0.6	-
Velocity at 0.2d	-	0.6	0.9	0.7	0.6	0.4	-
Velocity at 0.8d	-	0.4	0.6	0.5	0.4	0.3	-

- b) Explain briefly the basic principles involved in the developments of IUH by Clarks' method.
- c) Following coordinates are obtained from a stream gauging stations: (4m³/s, 9.55m), (8m³/s, 9.75m) and (16m³/s, 10.15m). Determine the equation of rating curve and compute the discharge in the stream corresponding to a stage of 10.40m.
- 5. a) Explain the MIP and WECS methods to determine the mean monthly flows of an ungauged river basin.
 - b) A bridge has an expected working life of 40 years and is designed for a peak flood of 100 years return period. Estimate the risk of failure of this bridge. If a risk of 15% is acceptable, what should be the return period for it?
 - c) Route the following flood hydrograph through a river reach for which Muskingum coefficient k = 10 h and x = 0.2. At the start of inflow flood, the outflow discharge is 10 m^3 /sec.

Time (h)	01	6	12	18	24	30	36	42	48	54
Inflow (m3/sec)	14.	27	60	150	135	115	85	65	30	15

[6]

[6]

[4]

[6]

[4]

03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

Exam.	New Back (2066 & Later Batch)									
Level	BE	Full Marks	80							
Programme	BCE	Pass Marks	32							
Year / Part	·III/I	Time	3 hrs.							

2073 Shrawan

Subje	c <i>t: -</i> Eng	inee	ering]	Hydro	logy (CE606)			
 Candidates are required to Attempt <u>All</u> questions. The figures in the margin if Assume suitable data if ne 	give their ndicate <u>F</u> cessary.	r ans F <u>ull I</u>	wers in <u>Marks</u> .	n their o	own w	ords as	far as p	ractical	ole.	а
. Explain Water balance Eq	uation and	l exp	olain ea	ich pro	cess.					
2. A storm commenced at 7: in mm as recorded by a re 40.5, 49.0, 63.0, 84.0, 95 graph by computing the n 120 and 180 minutes.	00 hours. cording ra .0, 102.0 aximum	The ain g , 11(rainf	ordina auge a).0, 11 all int	ttes of t 15 m 2.0 an ensities	the rain inute in d 112.0 s for du	nfall mantervals 0. Plot rrations	ass curves are 0, the interior of 15,	ve of th 9.5, 17 ensity 30, 45	is storm .0, 27.0, duration , 60, 90,	[
. a) Explain energy balance	e equation	n and	derive	e evapo	ration	equatio	n using	Bower	n's ratio.	2714 1. 1. 1.
b) For a storm of 3 hours	on 50 ha	catch	nment,	the rai	nfall ra	ites are	as follo	ows:		
Time of rain from beginning	(min):	0	30	45	75	100	125	150	180	•
 If the φ index of this left peal discharge. c) Explain interception a during hydrological articles 	nd deprealysis.	.5 cm ssion	1/hour, 1 stora	calcul ge loss	ate tot	w thes	e losse	s are e	stimated	ا [2
4. a) Explain how stage disc	harge rel	ation	iship is	establ	ished.	•				
b) Explain the procedure describe the mid se equations.	of stream ction me	m flo thod	ow me for o	asuren lischar	nent by ge con	v area-v mputati	elocity on usi	methong ske	od. Also etch and	í [3
b) What factors should be	e considei	red ir	ı selec	ting a s	ite for	stream	gaugin	g statio	n.	
5. a) The 3 h unit hydrogra given below 0, 0.41, 1 0.41, 0. If rainfall ex immediately by anoth what is the peak fl commencement of r negligible.	ph of a ba .38, 4, 7.7 cess with er 3 h sto ow produ ainfall w	asin v 72, 10 inte orm uced vould	with an 0.06, 9 ensity with a by t this	n area o .24, 6. of 2.0 n inten his rai peak	of 20 k 62, 4.5 cm/h sity of nfall a flow	m^2 at c 7, 3.86 for a p 1 cm/ and at occur?	ne hou 2.76, 2 eriod c h occu what Assun	r interv 2.07, 1. of 4 h rs on the time a ne base	al are as 38, 0.83 followed he basin after the eflow is	5 , 1 , 5 , 5
b) A 6 h unit hydrograph	of a basi	in ha	s a pea	k ordi	nate of	96 m ³	/s. Whe	en the b	ase flow	v.

in the stream is 25 m^3 /s, and when the basin has reached its minimum infiltration capacity of 2.5 mm/h, a 6 h storm with 18.3 cm of total rainfall had occurred on the basin. What is the magnitude of the peak discharge in the flood hydrograph produced by this storm?

[4]

6. a) The annual peak discharge of a river follows the Gumbel's extreme value distribution with a mean of 10000 m³/s and a standard deviation of 3000 m³/s. What is the probability that the annual peak discharge is more than 15000 m³/s? What is the magnitude of the peak discharge with an exceedance probability of 0.1? [Hint: $x = \frac{1.28255}{1.28255}$

$$\alpha = \frac{1.20205}{\alpha}; \beta = \mu - 0.48c$$

- b) Differentiate between continuous and discrete random variables. Give examples each in hydrology. Give three formulae which are used to determine the return period. [1+2+3]
- 7. The ordinates of the inflow hydrograph at 6 hr interval are as follows:

Time (hrs)	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
Discharge (m ³ /s)	0	50	280	610	1290	1900	2130	1900	1600	1440	1060	780	500	370	220	130

The discharge over the spillway Crest and the surcharge storage above the crest for different water surface elevations are as follows:

Water surface elevation (m)	140	141	142	143	144	145	146
Outflow Discharge (m ³ /s)	0 *	170	482	883	1360	1905	2500
Storage ×10 ⁶ (m ³)	0.00	15.0	35.0	60.0	95.0	140.0	240.0

Determine:

i) Maximum reservoir level

ii) Maximum outflow rate

iii) Reduction in the peak

[8]

[8]

04 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2074 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Engineering Hydrology (CE606)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Necessary tables are attached herewith.

✓ Assume suitable data if necessary.

- 1. Explain water budget equation. What is the role of water budget equation in hydrology? [2+2]
- 2. The annual rainfall at station X and the average of annual rainfall at 25 surrounding base stations in can are given below for the period of 36 years starting from 1941 [6+1+4+3]
 - i) Check whether the data of starting X is consistent
 - ii) In which year a change in regime indicated?
 - iii) Compute the mean annual rainfall for stations X at its present site for the given 36 year period first without adjustment and secondly with the data adjusted for the change in regime.
 - iv) Compute the adjusted annual rainfall at station X for the affected period.
- 3. a) Starting from Horton's equation, derive an expression for total infiltration in time "t". Also draw graph showing infiltration and total infiltration vs time. [4+2]
 - b) Calculate the potential evapotranspiration from an area near Simara, Bara, in the month of April by Penman's formula. The following data are available. [10]

Latitude: 27'N

Elevation (from msl): 107 m

Mean monthly temperature: 23°C

Mean relative humidity: 75%

Mean observed sunshine hour: 10

Wind velocity at 2 m height: 85 km/day

Nature of sunshine cover: closed ground green crop

Given:

A: 1.27mm/°C

 $H_a = 15.00 \text{ mm}$ of evaporable water per day

Mean monthly value of possible sunshine hour (N): 12.5 hours

Saturated vapour pressure at 23°C = 21.04 mm of Hg

4. a	Calculate the flood discharge of a stream by the slope area method given the following data: [12]
	Upstream flow area = 3500 m^2	
	Upstream wetted perimeter = 650	
Sectoria	Upstream velocity head coefficient = 1.17	
- 1984 -	Down stream flow area = 3250 m^2	
	Down stream wetted perimeter = 621 m	
	Down stream velocity head coefficient = 1.21	
· .	Falling difference $= 0.4$	
	Reach length = 1300 m	
	Manning's coefficient $\eta = 0.03$	
	Describe about the use of current meter according to flow characteristics of channel. [4]
5. :	What is Unit hydrograph? What are assumptions and limitations of UH? [2+2]
1	In a storm, the rainfall of depth 0.7cm, 0.9cm, 0.2cm, 1.0cm occurred in four successive hours. The storm hydrograph due to this storm has following hourly	"
]
en e	0.5, 44.5, 110.5, 85.5, 102.8, 94.0, 38.4, 18.6, 10.9, 5.3, 2.9, 0.5 m ⁻⁷ s	
	If the average losses are 0.2cm/hr, estimate the hourly ordinates of unit hydrograph. Assume suitable value of base flow. Calculate 2-h UH using Scurre Method.	
6.	river, whose annual flood peak can be represented by Gumbel distribution, has 0-years and 500-year return period flood of magnitude 9900 m^3/s and 12100 m^3/s	
1	spectively. The sample size is $n = 30$. $\begin{bmatrix} \bar{y}_n = 0.536, s_n = 1.1124 \end{bmatrix}$ [4+4+3+3]]
	What is the magnitude of 200 year and 1000 year flood? What are 95% and 80% confidence limits for 200 year and 1000 year flood if $f(95\%) = 1.96$ and $f(80\%) = 1.28$ A hydraulic structure of 25 year life was designed for 12300 m ³ /s peak flow. What is the hydrologic risk of the structure? What peak flow should be taken into consideration if you want the structure to be 99% reliable for a structure life of 25 years.	
7	drainage basin has the following Characteristics. [4	1
	$Area = 172 \text{ Km}^2,$	
	Storage constant = 10 hour	
	Time of concentration $= 8$ hour	
	The inner-isochrones area distributions are as follows	
	Image: Travel Time (hr) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8	
· .	nter-isochrones area (Km ²) 12 40 26 36 28 18 8 4	
	etermine the IUH for this catchment.	

 \mathbf{k}

 $\mathbb{E}_{\{u_i,v_j\}}^{\{u_i\}} g_i g_{i_1,i_2} \in \mathbb{C}_{\mathcal{O}} \setminus [\frac{1}{2}, \frac{1}{2}] \in \mathbb{C}_{\mathcal{O}}$

an in Ar Film 04 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2073 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

	n an		Sul	ject:	- Eng	ine	erin	ıg H	Iydro	log	у (С	CE606)					
✓ ✓	Candidates a	re re	quirec	l to giv	e thei	r an	swer	rs in	their	own	woi	rds as fa	ar as p	ractie			
×	Attempt All o	juesi in the	ions. marc	rin indi	cate I	- Full	Mar	rks.			, - <i>1</i> 7	- · · · · · · · · · · · · · · · · · · ·		مراجعهان ا			1.
V ./	Ine figures i	n me shlos	are a	ttacheo	l here	with	1.			-	(°)	2	6			1	
√	Assume suite	able	data ij	f neces.	sary.						~	ender en		15			×.
1.	a) Justify tl	ne in	iporta	nce of	study	ofŀ	lydro	olog	y in ci	ivil	engi	neering	, work	•		a and and a second s	[4]
	b) The cato 2 hour y carrying	hme was a flo 2 A	nt are observ ow of	a of a n yed on 1 m ³ /s	eserv partic is tak	oir i ulai en i oss	is 14 day from is 45	00 h 7. 55 the 5% c	na. A 1 5% rui reserv of eva	inifé n of voir. pora	orm f rea . The ation	precipi ached t e rate o 1 loss, f	tation he res f evap ind th	of 6 i ervoir oratic e cha	mm/h :. A o on wa nge ii	r for canal s 0.5 n the	
	reservoi	r lev	el for	6 hours	s, if th	e w	ater	sprea	ad of t	he r	eser	voir wa	as 45h	a.			[6]
2.	Annual rain stations for	fall a a per	at stati riod of	ion X a 35 yea	nd the	e av give	erag n be	e of low.	the ar	inua	ıl rai	nfall at	15 ne	arby	ain g	auge [8-	+3+4]
	i) Exa ii) In w iii) Dete data	mine /hich ermin 1 and	the co year ne the later	onsiste did a cl averag with ad	ncy of hange ge ann justm	the in r ual ent	e data regin rainf for th	a at s ne oc fall a he cl	station ccur? l at X fo hange	Disc Disc or 3 regi	tuss 5 yea ime.	the pos ars first	sible r withc	eason out ad	s justin	ig the	
3.	How you w Lake Evap	vill ir oratio	nterpre on usin	t the E ng Ene	nergy rgy-B	bal udg	ance et mo	in a etho	ı wate: d.	r bo	dy?	Develo	p the r	elatio	n for	daily	[2+5]
Δ	a) What a	re th	e facto	ors that	affect	the	run	off f	rom a	cate	chmo	ent?					[3]
т.				na to a	otregi	n_σ	ອກດຳ	nσ∩	nerati	on a	ntas	gauging	site a	ire gi	ven b	elow.	ν.
	b) The day	ta pe	nam	ig io a ion of	the c	n-g urre	ent t	mete	r is v) =	(0.5	55 N+0).04) t	n/s w	here	N is	
	revolut	ion t	equat	ond, C	alcula	te tl	ne di	scha	irge in	the	stre	am.					[8]
	T off	ada	(m)			0	10		4.0	7.0)	10.0	13.0	16	.0	17.0	
	hist form Leit	eage				0	1.5		2.5	3.5	5	2.4	2.2	1.3	3	0	
	pepth (m)	011776	nt me	ter at (6d	0	40		60	12	.0	125	50	40		0	
	uration of of	serv	ation ((s)		0	10	0	100	15	0	150	100	10	0	0]
			ution	un and	donori	ha i	te ne										[3]
	c) Define	ratii	ig cur	ve and	uesen	.051	.ເວ ແວ	ч э .									Г1 <i>К</i>
5	. The ordina	ate of	f 4n-ul	H are g	iven:										1.00		עני ר
	Time (hr)	0	2	4	6	8		10	12		14	16	18	20	22	24	-
	Ordinate (m ³ /s)	0	30	100	150	2	00	160) 12	.0	80	40	30	20	6	0	

A catchment has rainfall of 3.5, 2.5 and 4.5 cm in three consecutive two hours period. Assuming an average ϕ index of 1.25 cm/hr and base flow of river is 50 m³/s, Determine the flood hydrograph of the catchment.

- 6. a) The data of observed flood peaks of a river for a period of 30 years is found to plot as a straight line on semi-log paper with return period plotted on the logarithmic scale. The largest and smallest floods in the record are 1170 m³/s and 195 m³/s respectively. If 1350 m³/s respectively. If 1350 m³/s is selected as a design flood, what is the probability of its being exceeded during the next 20 years?
 - b) Prove that for a large sample as per Gumbel's distribution, the mean annual flood will have a return period of 2.33 years.

7. Explain the procedure of obtaining Clark IUH. C. Part

<u>Annual</u> r	ainfall (mm)	Vazz	Annual re	untall (mm)
at X	15 stations	neur Gaig	at X	15 stations
	average			average
- 664	593	1964	534	562
552	530	1965	491	481
	565		519	484
578	534	1967	456	481
570	562	1968	545	582
555	478	1969	534	514
639	606 😱	1970 -	453	496
687	552	1971	474	532
572	524	1972	466	540
	502	1973	478	484
570	532	1974	554	- 621
743	611 😴	1975 -	433	
534	534	1976	437	
496	501	1977	458	134
468	486	1978	545	547
532,	583	1979	560	J47
423	1 484	1980	405	0:00
473	610			478
	Annual r at X 664 552 558 578 570 555 639 687 552 639 687 522 524 570 743 524 570 743 534 496 468 532 423	Annual rainjali (mm) al X15 stations overage $al X$ 15 stations overage $al X$ 5 station	Annual rainjali (mm) al X Year al X 15 stations avcrage 664 593 552 530 558 565 1966 578 534 570 562 570 562 1968 555 478 1969 639 606 670 562 1970 687 552 570 524 1971 572 524 1971 572 524 1971 572 524 1972 524 502 1973 570 532 1974 1975 534 534 1976 1977 468 486 1978 532 1979 423 484 1980	Annual ranjall (mm) al X Year Annual randities at X 5 stations 15 stations at X 664 593 1964 534 552 530 1965 491 558 565 1966 519 578 534 1967 456 570 562 1968 545 570 562 1968 545 570 562 1971 476 687 552 1971 474 572 524 1972 466 524 502 1974 554 570 532 1974 554 570 532 1974 554 570 532 1974 54 643 544 1975 438 546 501 1977 458 532 583 1978 545 532 583 1979 580 468 486

1A)

NUOWIC

[7]

[5]

[6]

04 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2072 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Engineering Hydrology (CE606)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.

 $10 \text{ m}^3/\text{sec}.$

- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. Define the following terms: hydrological cycle, runoff, water balance and catchment.
- The catchment area of a basin may be approximated as a semicircle of radius r km with 2. respect to the corordinate axis set up with its origin at the center of the circle and the x-axis coincident with the diameter the area lies in the first and second quadrants and the position coordinates of the rain gauge stations are (0,0), $\left(\frac{r}{2},\frac{r}{2}\right)$ and $\left(\frac{-r}{2},\frac{r}{2}\right)$ km. Show that the Thiessen weights of the gauges are given by $\frac{0.5}{\pi}$, $(0.5-0.25/\pi)$ and $(0.5-0.25/\pi)$ [12] respectively. 3. a) The ordinates of a rainfall mass curve of a storm over a basin of area 850 km² measured in mm at one hour interval are 0, 10, 22, 30, 39, 45.5, 50, 55.5, 60, 64 and 68. If the infiltration during this storm can be represented by Horton's equation with $f_0 = 6.5$ mm/h, $f_C = 1.5$ mm/h and k = 0.15 /h, estimate the resulting runoff volume. [10] b) Write down Penman equation and explain all variables and constants involved in it. [4] Mention the factors that should be considered for the proper selection of stream 4. a) [4] ganging site. b) Explain with sketch how you determine the stage for zero discharge. [6] e) Find the drainage density, average length of overland flow, form factor and channel [4] slope for a basin with the following data: Area of basin (A) = 140 km^2 Distance between the outlet to the farthest point (L) = 21 km Elevation difference between the outlet and the farthest point (h) = 1090 mTotal length of channels of all order $(L_s) = 654$ km 5. a) Describe the procedure of derivation of unit hydrograph from complex storms using [8] appropriate expressions. b) Given below are ordinates of a 4 h unit hydrograph of a basin in m³/s at one hour [6] intervals. 4, 25, 44, 60, 70, 61, 52, 45, 38, 32, 27, 22, 18, 14, 11, 8, 6, 4, 2, 1 What is the area of the basin? 6. The observed annual peak flood of a river in m^3/s for a period of 20 years from 1981 to 2000 are given below: [14] 190, 155, 298, 136, 137, 131, 140, 124, 185, 104, 91, 154, 109, 269, 164, 270, 142, 72, 130, 111. Prepare a graph of flood peak versus the return period and hence estimate the annual peak flood with a return period of 30 years. 7. Route the following flood hydrograph through a river reach for which Muskingum coefficient k=10 h and x=0.2. At the start of inflow flood, the outflow discharge is

Time (h) 0 12 18 24 30 42 48 54 6 36 Inflow (m^3/sec) 14 27 60 135 85 150 115 65 30 15 ***

[4]

New Back (2066 & Later Batch) Exam. TRIBHUVAN UNIVERSITY 04 **Full Marks** 80 BE Level INSTITUTE OF ENGINEERING 32 Pass Marks BCE Programme **Examination Control Division** 3 hrs. Time \mathbf{III}/\mathbf{I} Year / Part 2072 Kartik Subject: - Engineering Hydrology (CE606) \checkmark Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. 120 The figures in the margin indicate Full Marks. Assume suitable data if necessary. [2+2] Explain Hydrologic cycle and water balance equations. 1. 2. a) Explain the different methods of determining the average rainfall over a catchment due to a storm. Discuss the relative merits and demerits of the various methods. [3+3] b) Explain double mass curve test for rainfall data. [6] 3. a) Explain briefly (i) Infiltration Capacity (ii) Φ-index lake (iii) W-index [6] b) Explain the energy budget method of estimating evaporation from a lake. [8] a) Determine the stage corresponding to zero discharge from the following data of a 4. [8] rating curve: 24.00 23.00 23.52 22.37 21.95 20.80 21.42 Stage (m) 1000 600 800 400 300 200 Discharge(m³/s) 100 b) Explain different methods of Stream gauge reading with sketch. [6] 5. A hydrograph for a 4,250-acre basin is shown in the accompanying sketch. The given hydrograph actually appeared as a direct runoff hydrograph from the basin, caused by net rain falling at an intensity of 0.20 in./hr for a duration of 5 hr, beginning at t = 0. [4+3+3+4] 0. Note

- (a) Determine the excess release time of the basin.
- (b) What percentage of the drainage basin was contributing to direct runoff 4 hr after min began (t = 4)?
- (c) Use your response to part (b) to determine Q_p , as shown in the sketch. Do not scale Q_n from the drawing.
- (d) Note that rain continued to fall between t = 3 and t = 5. Why did the hydrograph form a plateau between t = 3 and t = 5, rather than continue to rise during those 2 hours?

- 6. a) Explain Gumble's Distribution function. Derive frequency factor (k) using Gumble's distribution.
 - b) The flood discharge for 25 and 250 years from fitted Gumbel distribution are 90 and 550 m³/sec respectively. Estimate the flood magnitudes for 50, 500 and 1000 years by Gumbel analytically.
- 7. A basin having 128 km² of drainage area has 22 hours and 14 hours of concentration time and storage constant respectively. Determine the IUH for this basin if inter-isochrones area distribution is as below:

Travel time (hr)	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27
Area(km ²)	2	7	17	25	31	-23	14	6	3

We have a first

[7]

[7]

[8]

03	TRIBHUVAN UNIVERSITY	Exam.	Ne
INST	ITUTE OF ENGINEERING	Level	BE
Exami	nation Control Division	Programme	BCE
	2071 Shawan	Year / Part	III /]

Exam.	New Back (2066 & Later Batch)								
Level	BE	Full Marks	80						
Programme	BCE	Pass Marks	32						
Year / Part	III / I	Time	3 hrs.						

Subject: - Engineering Hydrology (CE606)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define Hydrological cycle and water balance equation. Write down a general water balance equation for a basin.

[4]

[6]

[6]

[8]

- a) The shape of a catchment is in the form of a pentagon ABCDE. There are 4 rain gauge stations P,Q, R and S inside the catchment. The position co-ordinates in km are: A(0,0), B(50,75), C(100,70), D(150,0), E(75,-50), P(50,25), Q(100,25), R(100,-25) and S(50,-25). If rainfalls recorded at P,Q,R and S are 90, 105, 114 and 120 mm respectively, determine the mean rainfall by Thiessen Polygon method.
 - b) Explain the different types of precipitation based on lifting mechanism.
- 3. a) Calculate the free water surface evaporation in june using the Penman method from an area, whose latitude is approximately 33°N. The available data include air temperature = 30°C, wind speed at 2 m height = 10 km/h, relative humidity = 60%, mean observed sun shine hours = 12 and reflection coefficient = 0.05.
 - b) The infiltration capacity in a basin is represented by Horton's equation as $fp = 3.0 + e^{-2t}$, where fp is in cm/hr and 't' in hours. Assuming the infiltration to take place at capacity rates in a strom of 60 minutes during, estimate the depth of infiltration in (i) the first 30 minutes and (ii) the second 30 minutes of the storm.
- 4. a) Estimate the flood discharge through a 5m-wide rectangular channel for the following data. The depth of water is 2m and 1.8m at two section 500m apart. The drop in water surface elevation is 0.25 m. Manning's roughness coefficient is 0.025, Assume eddy loss to be zero.
 - b) The following data were collected for a stream at a gauging station. Compute the discharge.

Distance from one end of	Depth, d	Immersion of current meter below water surface								
water surface	(m)	at 0.6	at Ó.6d		at 0.2d		d			
(m)		Rev.	Sec.	Rev.	Sec.	Rev.	Sec.			
3	1.4	12	50							
6	3.3		1	38	52	23	55			
9	5.0	1		40	58	30	54			
12	9.0]		48	60	34	58			
15	5.4			34	52	30	50			
18	3.8		1	35 ·	52	30	54			
21	1.8	18	50		1	1				

Rating equation of current meter : v= 0.3N+0.05

An S- hydrograph is given such that at time t = 0, its ordinate is 1cm/h and it remains so for an indefinite period of time. Determine a 2-hour unit hydrograph. Using this unit hydrograph, determine a 4- hour unit hydrograph. [8+6]

[3+3]

[8]

[6]

- 6. An analysis of an annual flood., series convering the period 1890 to 1966 on a certain river shows that the 80 year flood has a magnitude of 620000 units and 1.4 year flood has a magnitude of 215000 units. Assume the annual floods are Gumbel distributed. [6+4+4]
 - i) What is the probability of having a flood as great as or greater than 440000 units?
 - ii) What is the magnitude of flood having a recurrence interval of 40 years?
 - iii) What is the probability of having 575000 units flood or a greater flood in the coming 25 years time?
- 7. a) Explain the concept of attenuation and lag of peak due to routing with sketch. [4]

[4]

b) Starting from the continuity equation, obtain the equation of reservoir routing.

SATURATION VAPOR PRESSURE OF WATER

Temp	Temperature.		ation vapor ssure. e,	
°C	°F	mb	mm of Hg	(mm Hg/"F)
0	.32	6.11	4.58	0.30
5.0	41.0	8.72	6.54	0.45
7.5	45.5	10.37	7.78	0.54
10.0	50.0	.12.28	9.21	0.60
12.5	54.5	14.49	10.87	0.71
15.0	59.0	17.05	12.79	0.80
17.5	63.5	20.00	15.00	0.95
20.0	68.0	23.38	17.54	1.05
22.5	72.5	27.25	20.44	1.24
25.0	77.0	31.67	23.76	1.40
27.5	81.5	36.71	27.54	1.61
30.0	86.0	42.42	31.82	1.85
32.5	90.5	48.89	36.68	2.07
35.0	95.0	57.07	42.81	2.35
37.5	99.51	64.46	48.36	2.62
40.0	104.0	73.14	55.32	2.95
45.0	113.0	94.91	71.20	3.66
. ppersonante de la companya qu				a a substantia de la companya de la

MEAN MONTHLY SOLAR RADIATION INCIDENT AT THE EARTH'S OUTER SPACE (EXTRATERRESTRIAL RADIATION), & IN MAY OF PARTICIPATE WATER/DAY, IN NORTHERN HEMISPHERE WITH L = 569 CAL/C.

					North lat	itude ('N)			1.14 (A	•
Month	90°	80°	70°	60°	50*	40*	30°	20°	10*	0°
January	ه خد			1.3	3.6	6.0	8.5	10.8	12.8	14.5
Eebruary .		-	1.1	3.5	5.9	.8.3	- 10,5	12.3	13.9	15.0
March		1.8	4.3	6.8	9.1	11.0	12.7	13.9	14.8	15.2
April	7.9	7.8	9.1	11.1	12.7	13.9	14.8	15.2	15.2	.14.7
May	14.9	14.6	13.6	14:6	15.4	15.7	16.0	15.7	15.0	13.9
June	18.1	17.8	17.0	16.5	16.7	16.7	116.5	15.8	14.8	13.4
Inty	16.8	16.5	15.8	15.7	16.1	16.3	16.2	15.7	14.8	13.5
Airstist	11.2	10.5	11.4	12.7	13.9	14.8	15.3	15.3	13.0	14.2
Serventur	2.6	4.12	5.3	8.5	10.5	12.2	13.5	14.4	14.9	14.9
Detenar		0.2	2.4	4.7	7.1	9 AT	11.3	12.9	14.1	15.0
Dimember			0.1	1.0 -	4.3	6.7	14 43	11.2	13.1	14.6
December		new		0.9	3.0	3:5	79	10.3	12.4	14.3

MEAN MONTHLY	VALUES	OF POSSIBLE	SUNSHIN	ie hou	RA #	
					سمطيمتهم	سأنهده

(N)	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	- Oct.	Nov.	De
0°	12.1	12.1	12.1	12.1	12.1	12.1	12,4	. při	12.1	12.1	12.1	12.
10"	11.6	11.8	12.1	12.4	12.6	12.7	12.6	12,4	12.9	11.9	11.7	11
20°,	11.1	11.5	12.0	12.6	13.1	13.3	13.2	12.8	12.3	11.7	11.2	10.
30°	10.4	11.1	12.0	12.9	13.7	- 14.1.	13.9	-132	12.4	11.5	10.6	10.
40°	9.6	10.7	11.9	13.2	14.4	15.0	14.7	13.8	12.5	11.2	10.0	9
50°	8.6	10.1	11.8	13.8	15.4	16.4	16.0 4	-143	12.7	10.8	9.1	8

**

120

TO TO THE STANT INTY DO SITY	Exam.		Regular 🕴	an a
04 IRBHUVAN ON VERSIA	Level	BE	Full Marks	80
INSTITUTE OF Entonice Invision	Programme	BCE	Pass Marks	32
xamination Control Division	Vear / Part		Time	3 hrs.
2071 Chattra				
Subject: - Engine	ering Hydrol	.ogy (CE606) .	
in a site of the s	swers in their o	wn words as	far as practicable	
Candidates are required to give men and	Sword in choir -		· · · ·	
Attempt <u>All</u> questions.	Marks.			
Ansama suitable data if necessary.	<u>,</u>		$q_{\rm eff} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^2 \left(\frac{1}{2} + \frac{1}{2} \right$	
Assume suituble data griecezza g				
	Irological Cycl	e	•	•
. Explain all hydrological process in Hydrol	nological Cycl		1 /	nont
2. a) Describe methods of averaging	point rainfall	over a cate	hment area will	1 lieat
sketches.		· · · ·	•	· ·
b) Explain the energy budget method	of estimating e	vaporation fr	om a lake.	
b) Explain the entropy of S	tion for an are	a over Kathr	nandu in the mo	nth of
3. Calculate the potential evaporalispital	1011 101 uni uno		· · · · ·	
March by Penman Meulou.			• •	
The flowing data is available:	10	000		• • •
Mean Monthly temp	: 10	.0~		
Mean RH	:00	70		1973) 1973
Mean sunshine hours	:91	1	. • تح	
Potential sunshine hours	.1.4			
Wind Velocity at 2m net	gnt . 51	75		and the second
Albedo	distion = 11 tr	m of hg/day	7. (* 1997) 7. (* 1997)	1.19
Upper terresterial Solar la				
Other values:				e de la composition Anno 1990
Latitude 20.5		. / .		
Longitude . 04.J	10.0 °C	= 9.2	mm of Hg	· : ·
Saturated vapor pressure at	ssure	= 1.2	24 mm/°C	
Stope of Saturate vapor pro	1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	= 0.4	9mm∕⁰C	
Psychiometric constant		= 2.0	1*E-9 mm/day	to a construction of the second se
HONZINAL CONSIGN		S4		

4. a) Compute the stream flow from meter is:

and a same a memory and and it is in r	nlaan a	nd Ni is i	revolutio	n/sec.		• •			
V=0.035+0.74*N, where V is in i	Insec a		15	25	35	5.0	6.0	7.0	7.5
Distance from bank (m)	0	0.0	1.5	1.0	17	13	0.7	0.3	0
Water Depth (m)	0	0.3	0.75	1.4	1 100	110	80	20	0
No. of Revolutions	0	15	95	110	120	100	70	40	
Time (sec)	0	45	85	95	90	100	10	40	

b) Explain how the monthly flows from the ungauged locations are estimated from the observed rainfall data over the catchment, in Nepal.

[8]

[6]

5. A 2-hr unit hydrograph for a basin is shown in the sketch.

(a) Determine the peak discharge (in cfs) for a net rain of 5.00 in./hr and a duration of 2 hr.

- (b) What is the total direct surface runoff (in inches) for the storm described in part (a)?
- (c) A different storm with a net rain of 0.50 in./hr lasts for 4 hr. What is the discharge at 8 p.m. if the rainfall started at 4 p.m.?

- 6. a) If the annual flood series data for a catchment are available for N consecutive years, explain a procedure to determine a flood discharge with a return period of T, (where T>N), by using Log Pearson type III distribution method.
 - b) Calculate the flood discharge using Empirical method from a catchment of area 100sqkm. The catchment has longest river of 60km. The elevation difference of the river is 20m. Rainfall runoff coefficient is 0.6 and maximum daily rainfall is 200mm.
- 7. Explain in detail time area method for estimating runoff hydrograph.

[8]

[6]

[8]

· Bry

()3	TRIBHUVAN UNIVERSITY	Exam.		Regular	
	INS	STITUTE OF ENGINEERING	Level	BE	Full Marks	80
Ex	an	ination Control Division	Programme	BCE	Pass Marks	32 2 hrs
11, 00, 00 100, 00		2070 Chaitra	Year/Part		111116	5 11 5.
× × ×	Car Att The Ass	ndidates are required to give their ans empt <u>All</u> questions. e figures in the margin indicate <u>Full</u> sume suitable data if necessary.	swers in their of <u>Marks</u> .	own words as fa	r as practicable	
1.	Ex	plain different prospects of Hydrolog	ncal study.	** .*		
2.	a) b)	What can be the causes of inconsi Explain how it can be corrected for The rainfall depth with time during	istency while the future use? a storm at a sta	recording the r tion is as given	ainfall of a st	ation?
ime		6:00 6:30 7:00 7:30 8:00 1	8:30 9:00 9:	$\frac{30}{6}$ 10:00 10:3	0 11:00 11:3	0 12:0
Lainfa	.11 (c)	<u>m) 0 7 5 8 9</u>				· · ·
	i) ii)	Construct the hyetograph of this stor Compute maximum average intens storm and plot the resulting intensity	rm for 30 min ity of rainfall y duration curv	and 2 hours inte for 30 min, 1 re.	hour, 2 hour i	n this
3.	a)	Calculate the daily potential evaport having the following characteristics sea level, mean monthly temperatu observed sunshine hours = 10, we reflection coefficient is 0.05 .	transpiration b :: latitude = 30 re = 15° C, me rind velocity	y the Penman r "N, elevation = ean relative hur at 2 -m height	nethod from a = 300 m above nidity = 70% , t = 50 km/da	mean mean y and
	b)	Precipitation falls on a 100 km ² drai	nage basin acc	ording to the fo	llowing schedu	ıle:
	la A	Time (minute)	30 60	90 120 -		3
		Determine the total storm rainfall. A runoff is 3 cm.	$\frac{\text{hr}}{4} = \frac{2}{2}$	6 5 -index for the b] basin if the net	storm
4.	a) b)	Explain the stream flow computation Write the method of estimating more a Nepalese river.	n by slope area nthly flows in	a method. a stream or rive	er by MIP met	nod in
	c)_	What is mean by rating curve? W method of drawing the rating curve	Vrite the uses in a particular	of rating curv section of a rive	e. Also expla er.	in the [1-
5.	a)	The direct runoff hydrograph due to such that its base is 8 hours and its duration and intensity of the effect Derive and sketch a 4 hour unit hydr	o an effective height at the tive rainfall ar rograph.	rainfall event in midpoint of the e 4 hours and	n given by a tr e base is 1cm/l 1cm/h, respec	iangle n. The tively.
	b)	A 1 hour unit hydrograph is given b 0.25/hour. Construct an S-hydrograp	by a rectangle oh using this U	whose base is 4 H.	hours and he	ight is
6.	a)	Analysis of the annual flood peak of and a standard deviation of $187 \text{ m}^3/2$ to have an expected life of 50 y acceptable reliability of 85%. Us discharge for this project.	of a river for 4 s. A proposed /ears. Policy sing Gumbel?	3 years yielded water control p decision of the s method, rec	a mean of 33 roject on this r project allo commend the	0m ³ /s iver is ws an flood
		A table for reduced mean (\bar{y}_n) and r	educed standa	rd deviation (S _r) is given belo	w:
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	44 4	5	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	458 1.1480	1.1499 1	.1519	
		Lumble mandation and a second s	۵ مېدود مېمر دنه ^ر ست ومد سندگسې سرمېستې و مدر د در			

7. For what purpose time area method is used? Explain time area method using a time area histogram of a catchment and a set of effective rainfall hydrograph over it. Comments on [1+5+2]its drawbacks.

Temp	erature	Satura pre	ation vapor ssure, e,	Slone
°C	°F	mb	mm of Hg	(mm Hg/°F)
	.32	6.11	4.58	0.30
5.0	41.0	8.72	6.54	0.45
7.5	45.5	10.37	7.78	0.54
10.0	50.0	12.28	9.21	0.60
12:5	54.5	14.49	10.87	0.71
15.0	59.0	17.05	12.79	0.80
17.5	63.5	20.00	15.00	0.95
20.0	68.0	23.38	17.54	1.05
22.5	72.5	27.25	20.44	1.24
25.0	77.0	31.67	23.76	1.40
27.5	81.5	36.71	27.54	1.61
30.0	86.0	42.42	31.82	1.85
32.5	90.5	48.89	36.68	2.07
35.0	95.0	57.07	42.81	2.35
37 5	99.51	64 46	48 36	2.62
40.0	104.0	73 14	55.32	2.95
45 0	113.0	04 01	71.70	3 66

MEAN MONTHLY SOLAR RADIATION INCIDENT AT THE EARTH'S OUTER SPACE (EXTRATERRESTRIAL RADIATION). G. IN MM OF EVAPORABLE WATER/DAY, IN NORTHERN HEMISPHERE WITH L = 560 CAL/G.

				1	Vorth lat	tude (*N)				
Month	90°	80°	70°	60°	50°	¥0°	30°	20*	io•	0°
January	پين <u>ي</u> . ا			1.3	3.6	6.0	8.5	10.8	12.8	14.5
Eebruary			1.1	3.5	5.9	8.3	. 10.5	12.3	13.9	15.0
March	diama -	1.8	4.3	6.8	9.1	11.0	12.7	13.9	14.8	15.2
April	7.9	7.8	9.1	11.1	12.7	13.9	14.8	15.2	15.2	.14.7
May	14.9	14.6	13.6	14.6	15.4	15.9	16.0	15.7	15.0	: 13.9
hme	18.1	17.8	17.0	16.5	16.7	18.7	16.5	15.8	14.8	13.4
Inty	16.8	16.5	15.8	15.7	16.1	16.3	16.2	15.7	14.8	13.5
Anonist	11.2	10.6	11.4	12.7	13.9	14.8	15.3	15.3	15.0	14.2
Sentember	2.6	4.0	6.8	8.5	10.5	12.2	13.5	14.4	14.9	14.9
October		0.2	2.4	4.7	7.1	9.3	113	12.9	14.1	15.0
Simminar	2		0.1	10.	4.3	67	91	11.2	13.1	14.6
December		-		0.9	3.0	5:5	7.9	10.3	. 12.4	14.3

MEAN MONTHLY VALUES OF POSSIBLE SUNSHINE HOURS N

Latitude	the same of		Hillings, stickshort r	n spissal for helping in the		M	onth and any second				
(°N)	Jan.	Feb.	Mar.	Apr.	May	June	July Aug.	Sept.	Öct.	Nov.	Dec.
0°	12.1	12.1	12.1	12.1	12.1	12.1	12.1 12.1	12.1	12.1	12.1	12.1
· 10°	11.6	11.8	12.1	12.4	12.6	12.7	12.6 12.4	12.9	11.9	11.7	11.5
20°	. 11.1	11.5	12.0	12.6	13.1	13.3	13.2 12.8	12.3	11.7	11.2	10.9
30°	10.4	11.1	12.0	12.9	13.7	14.1	13.9 13.2	12.4	11.5	10.6	10.2
40°	9.6	10.7	11.9	13.2	14.4	15.0	14.7 13.8	12.5	11.2	10.0	9,4
50°	8.6	10.1	11.8	13.8	15.4	16.4	16.6 18.5	12.7	10.8	9.1	8.1

	Exam.	New Back (2	000 & Later	20
03 TRIBHUVAN UNIVERSITY	Loval	BE	Full Marks	00
INSTITUTE OF ENGINEERING	Level	DCE	Pass Marks	32
Examination Control Division	Programme		Time	3 hrs.
2070 Ashad	Year / Part	111/1	1	

Subject: - Engineering Hydrology (CE606)

Candidates are required to give their answers in their own words as far as practicable.

- ✓ Attempt <u>All</u> questions.
- \checkmark The figures in the margin indicate <u>Full Marks</u>.
- ✓ Normal graph papers will be provided.
- Assume suitable data if necessary.
- 1. Why the study of hydrology is important for engineers for planning and designing of water resources projects in Nepal? Explain the significant features of global water balance [2+2]with necessary equation.
- 2. a) In what way you can present the precipitation data? What are the benefits of each method? Explain the method of drawing Intensity Duration Frequency (IDF) curve. [3+2+3]
 - b) A catchment has seven raingauge stations. In a year the annual rainfall in cm recorded by the gauges are as follows: 130, 142.1, 118.2, 108.5, 165.2, 102.1, 146.9 for a 5% error in the estimation of the mean rainfall, calculate the minimum number of additional stations required to be established in the catchment.

3. A 4-hour storm occurs over a 80 km^2 watershed. The details of the catchment are as foll

01	vs.			Housely Dainf	all (mm)	
	Sub basin	ϕ index (mm/h)	1 st hour	2 nd hour	3 rd hour	4 th hour
	(Km)	10	16	48	22	
	15	15	16	42	20	6
	25	21	12	40	18	0
-	50	16	15	42	18	1 0

Calculate the runoff from the catchment and the hourly distribution of the effective rainfall for the whole catchment.

4. Calculate the discharge of river section as given:

							10	112	16	117	18	19	1
Distance	0	1	2	3	4	6	8	12	10				
(m)					05	71	56	4.7	3.5	2.1	1.4	0	
Depth (m)	0	1	4.3	1.2	0.3	1.7	25	23	21	1.8	1.5	0	
Revolution	0	1.4	1.0	2.6	2.9	2.1	2.5	2					
/sat 0.2d					+	1.0	17	15	13	1.1	1.0	0	
Revolution	0	.7	1.2	1.8	2.0	1.9	1./						
/ e at 0 8d		4.	4			1							

The current meter formula is v = 0.02 Ns -0.02, v = velocity (m/s) and Ns = revolution per minute.

5. In a storm the rainfall excess of 0.5 cm, 0.0 cm and 0.8 cm occurred in three successive hours. The storm hydrograph due to this storm has the hourly ordinates (Q) as given below: 0.5, 44.5, 110.5, 85.5, 102.8, 94.0, 38.4, 18.6, 10.9, 5.3, 2.9, 0.8 (cumecs). If there is a constant base flow of 0.5 cumecs, find the hourly ordinates of unit hydrograph. If 2 successive storms of 6.5 cm and 10.5 cm of 3 hours duration and ϕ -index of 0.2 cm/hr occurred in the same catchment, what is the peak flow from the catchment?

[9+5]

[4]

[14]

[14]

- 6. a) Mention the steps for the computation of flood of return period T using graphical method.
 - b) The following are the annual peak flow data (m^3/s) of a river from 1990 to 2006:

Year	1990	1991	1992	1993	1994	1005	1006	1007	Tana
Peak		1	1			1993	1990	1991	1998
discharge					ala ann an Aonaich Chuise an Aonaich		an an Arrana. An t-an		
(m³/s)	1400	4160	2580	2910	2250	1360	2280	2540	2000
Year	1999	2000	2001	2002	2003	2004	2005	2000	3300
Peak		[1			2004	2005	2006	
discharge								landa an air Airtí	
(m³/s)	3420	6170	2160	1360	5440	1340	3360	2000	

Compute flood magnitude with 50 year return period (T) using Log-Pearson type III distribution. For T = 50 year, obtain frequency factor (K_T) for the computed coefficient of skewness (C_s) using following table.

The second se	C,	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.0	4
ĺ	Κ _T	2.054	2.107	2.159	2.211	2.261	2.311	2 359	2 107	2 152	2.400	
			1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -					2.333	2.401	2.435	2.498	2.542

C,	1.2	1.4	1.6	1.8	2 22	25	2
K	2.626	2.706	2.78	2.848	2.912 2.970	3.048	3.152

7. Explain the procedure of deriving Clark UH.

[8]

han wanter in the first

[4]

[10]

03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

2069 Chaitra

Exam.		Regular 🔪 👘	2.00.00
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Engineering Hydrology (CE606)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Normal graph papers will be provided.
- ✓ Assume suitable data if necessary.
- 1. What is hydrological cycle? Draw a neat sketch of the cycle showing all components. [1+3]
- 2. a) How would you determine optimum number of rain gauges to be installed in a given catchment?
 - b) Explain Intensity Duration Curve and Depth Area Curve.
- a) What is the difference between potential evapotranspiration (PET) and Actual evapotranspiration (AET)? Explain the penman's method for the estimation of PET from an area.
 - b) The infiltration of a catchment can be represented by the equation $f = 15+50e^{-0.9t}$. If the rainfall intensity of 45mm/hr occurs continuously for 10 hour from a catchment of area $12km^2$, calculate [2+2+2+2]
 - i) Total runoff volume generated from that catchment
 - ii) Total infiltration volume at the period
 - iii) Calculate time from the start of rainfall from which runoff started
 - iv) Show your all (above three) results in infiltration curves
- 4. a) The stage and discharge data of a river are given below. Derive the equation of rating curve (stage-discharge relationship) to predict the discharge for a given stage. Assume the value of stage for zero discharge as 161.0m.

		the second s	and the second se					the second s	
Stage (m)	161.3	161.7	161.9	162.8	163.4	163.8	164.5	165.4	165.7
Discharge (m ³ /s)	30	120	210	450	650	825	900	1000	1050

- b) Describe the principle of slope-area method for the measurement of flood discharge in a stream. Explain the procedure to compute peak discharge using method.
- 5. A 1 hour unit hydrograph of a small catchment is triangular with peak value of 3.6 m^3 /s occurring at 2 hours from the start and a base time of 6 hours. Following urbanization over a period of two decades, the infiltration index φ has decreased from 0.7cm/h to 0.4cm/h. Also one hour unit hydrograph has now peak of 6.0 m³/s at 1 hours from start and time of base is 4 hours. If a design storm has intensities of 4cm/hour and 3cm/h for two consecutive one hour intervals.
 - a) Estimate the percentage increase in the peak storm runoff due to urbanization.
 - b) The volume of flood runoff due to urbanization.
- 6. The project life of headworks is 50 years. The flood discharges at risk 63.58303% is 4200 cumes. The average flood is 3500 cumec, which is derived from long term historical data using Gumbel distribution. Calculate the discharge from 500 year return period and risk 39.49939%. Prepare a Gumbel graph paper using normal arithmetic graph paper. Plot these three discharges on Gumbel paper.
- 7. What is linear reservoir? Explain the procedure to obtain Clark UH from time area method.

[8]

[3+3]

[14]

[14]

[2+6]

[6]

[6]

03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2068 Jestha

ويدودون فيستحد المستحد المتحكين فأراب			
Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	III / II	Time	3 hrs.

[12]

[4]

[8]

[8]

[4]

[12]

[6]

[4]

[6]

[8]

[4×4]

Subject: - Engineering Hydrology

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt any <u>Five</u> questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- a) The ordinates of a 4-h UH of a catchment of area 105km² are given in the table below. Derive 2-h total Runoff Hydrographs from (i) <u>rainfall</u> excess of <u>3.5</u> cm occurring in 4 hrs duration and (ii) Rainfall excess of 3.5cm occurring in 2 hr duration, and a base flow of 12m³/sec.

t hre.	0 1	1 0	1 10										
0,1113		8	12	16	20	24	28	32	36	40	44	48	52
Q, m /s	0 3) 55	90	130	170	180	160	110	60	35	20	8	0

- b) Describe the hydrological cycle with neat sketch.
- a) The flood discharges for 25 and 250 years from fitted Gumbel distribution are 90 and 500m³/sec respectively. Estimate the flood magnitudes for 50, 500 and 1000 years by Gumbel analytically.
 - b) A storm with following distribution of rainfall produced a surface runoff of 12cm. Estimate the ϕ index of the storm.

	Storm time (hr)	1	21	2	1 1	5 1		7 00	
	Rainfall in each how: (am)	07		20	4	<u> </u>	0	/ <u>8`</u>	1
्। 			22	3.0	4.6	3.6	3.2	2.0 0.7	

- 3. a) The normal annual rainfall at four stations A, B, C and D in a basin was observed as 75.8, 62.4, 70.7 and 87.3cm respectively. In a particular year, the station D remained inoperative and the rainfall at stations A, B and C was recorded as 85.3, 66.5 and 75.2 respectively. Estimate the missing rainfall at station D.
 - b) Describe slope area method of estimating discharge with neat sketch? Differentiate this method with Velocity-Area method?
- 4. a) For the Horton model, the infiltration rate at the begining of rainfall is 10cm/hr and decreases to 1cm/hr after 10 hours. A total of 70cm of water infiltrated during the 10 hour period. Compute the value of k of the Horton model.
 - b) Derive the formula for discharge from a fully penetrating well operating under steady state in a confined aquifer with neat sketch showing all components.
 - c) What are the metrological parameters used in Penman's equation? Describe the use of this equation.
- 5. a) Determine the stage corresponding to zero discharge from the following data of this equation.

					· · · · · · · · · · · · · · · · · · ·	· · ·	[8]	
Stage (m)	20.80	21.42	21.95	22.37	23.00	23 52	24.00	•••
Discharge (m ³ /s)	100	200		400	600	800	1000-	·

b) Describe the factors affecting runoff from a catchment.

6. Write short notes on any four of the following:

- a). Rational method for estimating design flood
- b) Flood control and mitigation methodsd) Recharge of ground water
 - c) Double Mass Curvee) Evaporimeters

03	TRIBHIVAN ILMUED STEV	Thereas			
		+ mxam.	Reg	ular/Back	·
INSTI	TUTE OF ENGINEERING	Jevel	BE	Full Marks	80
Examin	ation Control Division	Programme	BCE	Pass Marks	32
	2068 Bhadra	Year/Part	III / II	Time	3 hrs.

Subject: - Engineering Hydrology

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

 \checkmark A compt any <u>Five</u> questions.

 \checkmark The figures in the margin indicate <u>Full Marks</u>.

🗸 Assume suitable data if necessary.

1. a) The ordinates of 6-h UH are given as follows:

Time				1	T	· · · · ·	r		·····			· · ·		
(hours)	0	3	6	9	12	15	18	21	24	.27	30	33	36	
6 -hr UH	0		:										·	Ĺ
ordinates	0 .	- 15	_24	42	58	.78	· 69	58	43	30	17	15	0	I

A storm has successive 3-hr rainfall of 3, 5 and 4cm respectively. ϕ -index is 0.2 cm/hr, base flow is 53 m³/s. Determine the resulting flow hydrograph.

b) Write down the hydrogeomorphological factors that affect the stability of stream or

2. The data series of peak runoff in a stream was recorded as shown in the following table. Plot the observed peak flow versus return period and Gumbel extreme value fit curve. Comment on the model applicability of the data series. [16]

Year	Peak discharge	Year	Peak discharge
1926	16.64	1939	8.34
1927	11.03	1940	1740
1928 .	8.63	1941	70.75
1929	44.14	1942	52.35
1930	20.99	1943	6.90
1931	7.64	1944	1533
1932	8.54	1945.	10.61
1933	229.51	1946	430
1934	130.74	1947	10.92
1935	29.99	1948	11.26
1936	21.08	1949	35.37
1937	11.09	1950	7 47
1938	175.46		/ , , , /
1938	175.46		

Take $\overline{y}_n = 0.5308$ and $\sigma_n = 1.091$

3. a) Three points on rating curve of a stream gauging station obtained from observed data have the following co-ordinates (2m³/s, 10.65m), (4m³/s, 10.85m) and (8m³/s, 11.25m). Determine the equation of the rating curve and compute the discharge in the stream corresponding to a stage of 11.5m [Use $Q = C_r (G-a)^{\beta}$ as the equation of rating curve].

b) List out the causes of shifting control in gauge stream discharge measurement and its relationship.

[6]

[2]

[12]

[4]

- c) A semi circle of diameter of 40 km with an equilateral triangle of side of 40km below its diameter is a close approximation to a river basin. The position co-ordinates of 5 rain gauge stations A, B, C, D and E located within the basin with respect to a coordinate axes system whose X axis and Origin coincident with diameter and centre of the circle are (10, 10), (-10, 10), (-10, -10), (10, -10) and (0, 0) km respectively. If the rainfall recorded at these rain gauges are 80, 95, 76, 82, 107mm respectively, determine the average depth of rainfall using Thiessen polygon method.
- a) Define equivalent depth of water for entain snow depth. Calculate the equivalent
 water depth, if snow depth is 0.5m, dens ty of snow and water are 200kg/m³ and 1000 kg/m³ respectively.
 - b) A stream is assumed to be trapezoidal in cross section having bed width of 12m and
 side slope 2 horizontal: 1 vertical in a reach of 1km. During flood time, high water levels recorded at both ends of the reach are:

Section	Elevation of bed (m)	Water surface elevation (m)
u/s	100.20	102.70
d/s	98.60	101.30

If Manning's n = 0.03, estimate the discharge in the stream.

- c) Write down the limitations of rational method for determination of peak flood and its application in civil engineering designs.
- a) The steady state discharge from a pumping well is 0.025m³/s. Following are the draw downs obtained from the multiple observation well test of confined aquifer.

r(m)	15	30	60	100	160	200	
s(m)	1.05	0.95	0.71	0.535	0.36	0.29	

Where r = distance of observation wells from pumping well and s = drawdown. Calculate radius of influence and transmissibility of the aquifer.

- b) Show that $F = \frac{f_o f_o}{k}$ in which F is the total infiltration depth above the $f_t = f_c$ of Horton's equation. Assume that the depth of soil is infinite. Where, f_0 = initial infiltration capacity, f_c = final steady state infiltration and k = Horton's constant depending on soil characteristics. [6] c) What assumptions did Penman use in deriving his evaporation formula? [2] 6. a) Define Hydrology and explain its application in civil engineering fields. [1+3] b) Write short notes on use of Gamma distribution in flow analysis. [4] c) A reservoir has following average meteorological values during a given week. [1+2]Saturated vapour pressure $(e_s) = 31.82$ mm of Hg Relative Humidity = 50%Wind velocity at 1m above ground = 12km/h Determine actual vapour pressure and wind velocity at 9m above ground. d) Prove that the specific yield of an open well from recuperation test is $\frac{C}{A} = \frac{1}{T} \ln \frac{s_1}{s_2}$, where $\frac{5}{5}$ 17 2119
 - $s_1 = draw down in well when pumping was stopped$
 - $s_2 = draw down in well after time T from the stopping of pump$
 - A = cross section area of well
 - C =specific capacity of well

[1+3]

[8]

[8]

[4]

[8]

x					
		7			
			-		3
63 IRIBHUVA	N UNIVERSITY	Exam.	T	eoular / Rack	
	ENGINEERING	Levol	BE	Full Marks	80
Examination C	ontrol Division	Programme	BCE	Pass Marks	22
2067 Ma	angsir	Year / Part	III / TT	Time	21
				111116	3 hrs.
	Subject: - Eng	ineering Hvd	rology		
✓ Candidates are re	mired to aires 41	2.	101069		
✓ Attempt any Five	quietions	wers in their ov	vn words as fa	r as practicable.	
✓ The figures in the	questions. Maroin indicate E-11 1	a.er w			
Assume suitable d	ata if necessary	<u>Marks</u> .			
	g neeebbary.				
1. The following are	the anti-				
700 km^2 due to a 6.	h rainfall	hydrograph of	flow from a	catchment are	a of
Time(II-		- ^ · · · · · · · · · · · · · · · · · ·			[16]
$\frac{1 \text{ Inte}(\text{Hour})}{\text{Discharge}(m^3/c)} = 0$	6 9 12 18	24 30 33	36 42 4	8 54 60 66	172
<u>Disonarge(m/s)</u> 40	65 140 215 360	400 350 330	270 205 14	5 100 70 50	40 5.5
a) Derive the ordi	nates of 6-h unit hydro	graph		· ·	
D) Calculate the f	lood hydrograph for t	wo successive	storms of 95	and 12.5 cm	of 6
nours duration i	ainfall and an average	storm loss of 0	.25cm/hr		51 0
2. a) Describe the st	atistical approach for	estimating the	floods of	1.0	
(design floods)	when annual maximum	a floods of few	Vears are own	quired frequend	cies
b) ⁺ Compute the st	ream flow from falls		years are avai.	ladie.	[8]
· · · · · · · · · · · · · · · · · · ·					
meter is: $V = 0.0$)45 + 0.76N where V	wing data. The	e calibrated e	quation of curr	rent
$\frac{1}{10000000000000000000000000000000000$	045 + 0.76N, where V	is in m/sec and	e calibrated e N is revolutio	quation of curr n/sec.	ent [8]
meter is: V = 0.(Distance from i Depth (m)	045 + 0.76 N, where V pank (m) 0 0.6	is in m/sec and 1.5 2.5	e calibrated e N is revolutio	quation of curr n/sec. 6.0 7.0 7	ent [8]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti	0.45 + 0.76N, where V 0.6 0 0.3 0.3 0.3	Wing data. The is in m/sec and 1.5 2.5 0.75 1.2	calibrated en N is revolution 3.5 5.0 1.7 1.3	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 7	rent [8]
meter is: V = 0.(Distance from i Depth (m) No. of Revoluti	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 0.3 0 - 0.5 0 - 0	Wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95	calibrated e N is revolution 3.5 5.0 1.7 1.3 120 110	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20	rent [8]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec)	045 + 0.76N, where V pank (m) 0 0 0.3 ons 0 15 0 45	Wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 95 110 85 95	calibrated ex N is revolution 3.5 5.0 1.7 1.3 120 110 90 100	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40	rent [8] 7.5 0 0 0
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 0.3 0 - 0.5 0 - 15 0 - 45 forms of precipitation	wing data. The is in m/sec and $1.5 2.5$ 0.75 1.2 95 110 85 95	calibrated explosion 3.5 5.0 1.7 1.3 120 110 90 100	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40	rent [8] 7.5 0 0
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 0.3 0 - 0.5 0 - 15 forms of precipitation 0 - 0.5 0 -	Wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 95 110 85 95 	calibrated ex N is revolution 3.5 5.0 1.7 1.3 120 110 90 100	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 70 40 0	rent [8] 7.5 0 0 0 0 [4]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows.	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 0.3 0 - 15 0 - 45 forms of precipitation 0 occurs over a 80 km ² v	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The	$\begin{array}{c c} \hline calibrated e \\ N is revolution \\ \hline 3.5 & 5.0 \\ \hline 1.7 & 1.3 \\ \hline 120 & 110 \\ \hline 90 & 100 \\ \hline \\ details of the \\ \end{array}$	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40 catchment are	rent [8] 7.5 0 0 0 [4] as
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows.	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 0.3 0 - 15 0 - 45 forms of precipitation 0 occurs over a 80 km ² v	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The	e calibrated ex N is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of the	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 70 40 0 catchment are 0 0	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²)	ϕ index (mm/h) ϕ	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I	calibrated explored is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of the Rainfall (mm)	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40 catchment are	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm follows. Sub basin(km ²) 15	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly H "hour 2 nd hou	e calibrated end N is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of the Rainfall (mm) ur 3 rd hour	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40 catchment are 4 th hour	rent [8] 7.5 0 0 0 [4] as [12]
meter is: V = 0.0 Distance from 1 Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²) 15 25	ϕ index (mm/h) 15 10 15 15 15 15 15 15 15 15	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I "hour 2^{nd} hou 16 48	$\begin{array}{c c} calibrated e \\ N is revolution \\\hline 3.5 & 5.0 \\\hline 1.7 & 1.3 \\\hline 120 & 110 \\\hline 90 & 100 \\\hline \\ details of the \\\hline \\ Rainfall (mm) \\\hline \\ r & 3^{rd} hour \\\hline \\ & 22 \\\hline \end{array}$	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 70 40 0 catchment are 4 th hour 10	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²) 15 25 35	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95	$\begin{array}{c c} calibrated e \\ N is revolution \\ \hline 3.5 & 5.0 \\ \hline 1.7 & 1.3 \\ \hline 120 & 110 \\ \hline 90 & 100 \\ \hline \\ \hline \\ details of the \\ \hline \\ \hline \\ Rainfall (mm) \\ \hline \\ ur & 3^{rd} hour \\ \hline \\ \hline \\ 22 \\ \hline \\ 20 \\ \hline \end{array}$	quation of curr n/sec. 6.0 7.0 0.7 0.3 80 20 70 40 catchment are 4 th hour 10 8	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm follows. Sub basin(km ²) 15 25 35 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I 16 48 16 42 12 40	$\begin{array}{c c} calibrated e \\ N is revolution \\\hline 3.5 & 5.0 \\\hline 1.7 & 1.3 \\\hline 120 & 110 \\\hline 90 & 100 \\\hline \\ \hline \\ details of the \\\hline \\ Rainfall (mm) \\\hline \\ ur & 3^{rd} hour \\\hline \\ & 22 \\\hline \\ & 20 \\\hline \\ & 18 \\\hline \end{array}$	quation of curr $n/sec.$ 6.0 7.0 7 0.3 80 20 70 40 70 40 40 6 4^{th} hour 10 8 6	rent [8] 7.5 0 0 0 (4] as [12]
meter is: $V = 0.0$ Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²) 15 25 35 5 Columbra of the store of the s	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The <u>Hourly I</u> ³⁴ hour 2 nd hou 16 48 16 42 12 40 15 42	e calibrated ex N is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of the Rainfall (mm) ur 3 rd hour 22 20 18	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 70 40 0 catchment are 4 th hour 10 8 6 8 8	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm follows. Sub basin(km ²) 15 25 35 5 Calculate the rundrainfall for the wh	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.6 0 - 0.3 0 - 15 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 0	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly H a hour 2 nd hou 16 48 16 42 12 40 15 42 t and the hour.	calibrated exN is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of theRainfall (mm)ur 3^{rd} hour 22 20 18 18 18 18 18	quation of curr $n/sec.$ 6.0 7.0 7 0.3 80 20 70 40 70 40 40 0 catchment are 4^{th} hour 10 8 6 8 of the effective	rent [8] 7.5 0 0 (4] as [12]
meter is: $V = 0.0$ Distance from Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm follows. Sub basin(km ²) 15 25 35 5 Calculate the rundrainfall for the wh (a) In a recuperation the store of	045 + 0.76N, where V $\frac{2000}{2000}$ $\frac{1}{200}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{1}$ forms of precipitation beccurs over a 80 km ² v $\frac{1}{0}$ $\frac{1}{10}$ $\frac{1}{15}$ $\frac{1}{21}$ $\frac{1}{16}$	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I * hour 2 nd hour 16 48 16 42 12 40 15 42 at and the hour. Tel in cr. at	e calibrated ex N is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of the Rainfall (mm) ur 3 rd hour 22 20 18 18 ly distribution	quation of curr $n/sec.$ 6.0 7.0 7 0.3 80 20 70 40 70 40 70 40 40 0 catchment are 4^{th} hour 10 8 6 8 of the effective	rent [8] 7.5 0 0 0 (4] as [12]
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²) 15 25 35 5 Calculate the runor rainfall for the wh (calculate the runor (calculate the runor) (calculate the runor)	ϕ index (mm/h) 1° ϕ index (mm/h) 1° 10 10 10 10 10 10 10 15 21 16 16 15 21 16 16 15 16 16 16 16 17 16 16 17 16 16 17 18 19 19 19 19 19 19 10 15 21 16 16 16 16 17 19 19 19 19 19 19 19 19 19 19 19 19 10 15 21 16 16 16 16 16 17 16 17 16	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly H hour 2 nd hour 16 48 16 42 12 40 15 42 12 40 15 42 12 40 15 42 15 42 15 42 15 42 15 42 15 42 15 42 15 42	e calibrated exN is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of theRainfall (mm)ur 3^{rd} hour 22 20 18 18Ly distributionrell was deprese	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 7 70 40 0 catchment are 4^{th} hour 10 8 6 8 of the effective assed by pumpin	rent [8] 7.5 0 0 0 (4] as [12] 7e
meter is: V = 0.0 Distance from i Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm of follows. Sub basin(km ²) 15 25 35 5 Calculate the runor rainfall for the wh A a) In a recuperation to by 3m and it recurs safe working depresent	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.3 0 - 0.3 0 - 15 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 0	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I hour 2^{nd} hour 16 48 16 42 12 40 15 42 15 42 40 15 42 15 42 1	e calibrated exN is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of theRainfall (mm)ur 3^{rd} hour 22 20 18 ly distributionvell was depresended of the well	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 70 40 0 catchment are 4^{th} hour 10 8 6 8 of the effective ssed by pumpin is 3.0m and the second sec	rent [8] 7.5 0 0 (4] as [12] 7e g
meter is: V = 0.0 Distance from Depth (m) No. of Revoluti Time (sec) 3. (a) Describe various (b) A-4 hour storm follows. Sub basin(km ²) 15 25 35 5 Calculate the rune rainfall for the wh (A) In a recuperation the by 3m and it recuperation the safe working depresent	045 + 0.76N, where V 045 + 0.76N, where V 0 - 0.3 0 - 0.3 0 - 15 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 forms of precipitation 0 - 45 0	wing data. The is in m/sec and 1.5 2.5 0.75 1.2 95 110 85 95 watershed. The Hourly I hour 2^{nd} hour 16 48 16 42 12 40 15 42 tt and the hour. wel in an open work. If the diamet and out the avera	e calibrated exN is revolution 3.5 5.0 1.7 1.3 120 110 90 100 details of theRainfall (mm) $1r$ 3^{rd} hour 22 20 18 19 100 <	quation of curr n/sec. 6.0 7.0 7 0.7 0.3 80 20 7 70 40 0 catchment are 4^{th} hour 10 8 6 8 of the effective ssed by pumpin is 3.0m and the pump.	rent [8] 7.5 0 0 (4] as [12] 7e g e [8]

Calculate the discharge of a stream having a high water surface elevations noted at two sections A and B, 10km apart. These elevations and other salient hydraulic properties are given below.

[8]

[8] -

[6]

Section	Water Surface elevation (m)	Area of x-section (\tilde{m}^2)	Hydraulic Radius (m) (m)
А	104.77	73.293	2.733
В	104.500	93.375	3.089

The eddyless coefficient is 0.3 for gradual expansion, 0.1 for gradual contraction and Manning's roughness is 0.02.

How is the double mass curve technique used to check the consistency and adjust the rainfall at a suspicious station? Explain with sketch. (λx)

What is a rating curve? Write down a standard equation for a rating curve. Explain in detail the procedure to estimate the parameters of that rating equation. [1+1+8]

Prepare a Gumbel probability paper from an ordinary graph/paper provided to you.

D

10

5. a)

OBY

a)

15 03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2066 Kartik

Exam.	Back					
Level	BE	Full Marks	80			
Programme	BCE	Pass Marks	32			
Year / Part	III / II	Time	3 hrs.			

[10]

[6]

[8]

[8]

[6]

[8]

Subject: - Engineering Hydrology

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt any *Five* questions.
- \checkmark The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. The expected life of a diversion weir is 50 years. At 20% and 40% risk, the discharge of the river is 1200 and 1060 m^3/s . [8+8]
 - a) Determine the mean and standard deviation of the data used.

b) Estimate the magnitude of flood with a return period of 500 years.

- 2. Ordinate of an 2 hour unit hydrograph at 1-hour interval are 5, 8, 5, 3 and 1 m^3/s . Calculate . [2+7+7]
 - a) Watershed area represented by the unit hydrograph
 - b) 1 hour unit hydrograph for the catchment
 - c) 3 hour unit hydrograph of the catchment
- The characteristics of an Isolated 1-h storm occurred over a basin is given below in 3. a) the table.

% of eatchment	φ index	rainfall (cm)	f		
Area	(cm/h)	First 0.5 hour	Second 0.5 hour		
10	1.0	0.8	15		
20	1.25	0.75	2.25		
30 -	0.5	·····1°()	0.8		
40	0.75	1.0			

Calculate total rainfall, total losses and runoff from the catchment.

- b) Discuss double mass curve method of adjustment.
- 4. a) Explain Velocity Area Method to calculate the discharge of the river.
 - b) Explain Slope Area Method to calculate the discharge of the river.
- 5. a) Explain various geomorphological characteristics of rivers.
 - b) Calculate the ETo by Penman Method for April month at longitude 84.5°, latitude 27.25° and altitude 1390m. The other climatic data are as follows: [10]

 $T_{min} = 20^{\circ}C$, $T_{max} = 30^{\circ}C$ $RH_{min} = 49\%$, $RH_{max} = 92\%$ Wind Speed = 350 km/day at 2m height Sunshine Hour = 9.5, Potential sunshine hours: 11.0 hours Saturated Vapor Pressure (ea) = 31.0 mbar, Extra Terrestrial Radiation (Ra) = 15 mm/day, albedo = 0.25 Slope of saturated vapor pressure = $1.4 \text{ mm/}^{\circ}\text{C}$ Stefan Boltzman constant: 2.01×10⁻⁹ mm/day Assume if any data missing 6. a) Explain Rational Method of calculating flood discharge. [6] b) Write down the Dupit's assumptions. [2]

c) Derive expressions for well discharge for steady flow in confined and unconfined aquifers.

03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2065 Kartik

Exam.	Back					
Level	BE	Full Marks	80			
Programme	BCE	Pass Marks	32			
Year / Part	III / II	Time	3 hrs.			

Subject: - Engineering Hydrology

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt any *Five* questions.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. The following are the ordinates of the hydrograph of flow from a catchment area of 770km² due to a 12-h rainfall.

[16]

Time (Hour)	0	6	12	18	24	30	36	42	48	54	60	66	72
Discharge (m ³ /s)	50	75	225	370	410	360	280	215	155	110	80	60	50

- a) Derive the ordinates of 12-h unit hydrograph.
- b) Calculate the flood hydrograph for two successive storms of 9.0 and 12.0cm of 12 hours duration rainfall each and an average storm loss of 1cm in 3 hours.
- An analysis of an annual flood series covering the period 1900 to 2000 (100 years) on a certain river shows that the 100-year flood has a magnitude of 640,000 m³/s and 2.0 year has a magnitude of 225,000 m³/s. Assume the annual floods fit with Gumbel distribution. [16]
 - a) What is the probability of having a flood as great as or greater than 440,000 m³/s?
 - b) What is the magnitude of the flood having a recurrence interval of 50 years?
 - c) What is the probability of having 575,000 m³/s flood or a greater flood in coming 25 years time?
 - d) Find the mean and standard deviation of the annual floods and occurrence interval of the mean flood.
- 3. a) How would you determine optimum number of rain gauges to be installed in a given catchment.
 - b) Differentiate between recording rain gauge and non recording rain gauge.
 - c) The infiltration rate for excess rain on a small catchment area was observed to be 9.0 cm/hr at the beginning of rain and it is decreased expontantially to be an equilibrium of 1 cm/hr after 10 hours interval. Determine the value of Horton constant.
- 4. a) Explain the stream flow measurement by velocity area method.
 - b) A small stream has rectangular section having 10m width in a reach of 5km and Manning roughness coefficient 0.03. During a flood the high water level records at the end of the reach as given below. Estimate the flood discharge of the river.

Section	elevation of bed	water surface elevation
U/S	100.2m	102.7m
D/S	98.6m	101.3m

- 5. a) Write down the steps with formula to calculate evapotranspiration from Penman method.
 - b) In a recuperation test, the static water level in an open well was depressed by pumping by 3m and it recuperated 1.5m in 1 hour. If the diameter of the well is 3.0m and the safe working depression head is 2.4m, find out the average yield of the pump.

6. Write short notes:

- a) Hydrological Cycle
- b) Double Mass Curve
- c) Rational methods of peak discharge estimation
- d) Hydro geomorphological characteristics of river

 $\mathbb{E}^{<}$

[8]

[8]

[16]

[4]

[4]

[8]

[8]

[8]

10								
				ا 70 ال	的供告	10.50		· · .
	03 j	IS E	TRI	BHUY.	ANUR	IVERS	ITY.	G
	łŋ,	IST	ITUT	E OF	ENC	GINE	ERIN	G .
4		li si si si	and have		45753.) Marina A			-
14			oari	on L	.0M	roi	LIVI	SION
1		979-43 97	20	65 (hai	tra		

	·	· · · · ·	
Exam.	1 Q	Regular/Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	111 / II	Time	3 hrs.

Subject: - Engineering Hydrology

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Five questions.

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

The officient of an east by drawing

The ordinates of 6 hr unit hydrograph of a catchment area of 770 km² are given below. [4+6-1

201	Subscription and an entering the subscription of the subscription of the subscription of the subscription of the			in a second second second second									1.84	
	Time	0	6	12	18	24	30	36.	42	48	54.	60	66	72
Ser and	Discharge ordinate m ³ /sec	··· 0	5	35	64	72	62	46	33	21	11.6	5.6	1.6	()
4.12	the state of the s	f H d	A Section Research				and the second se							

Assuming the constant base flow of 40 m³/sec.

a) What is the magnitude of peak discharge produced by a 6 hr storm yielding 5cm of

rainfall with \$index of 0.30cm?

b) Derive 18 hour U-H by method of superposition.

c) Derive 18 hour U-H by using S-curve method.

Flood frequency records on a river have been collected for 17 years starting from 1951 to 1967 and the peak values of the flood observed during each of these 17 years are given below.

Year	1951	1952	1953	1954	1955	1956	1957	1958	1959
Peak discharge (m ³ /sec)	3000	4400	6000	3500	2900	4800	3900	3300	6700
Year Meridan Strain	1960	1961	1962	1963	1964	1965	1966	1967	
Peak discharge (m ³ /sec)	-5400	- 4300 -	3700	4200	9000	4000	3600	5100	

a) Prepare a Gumbel's extreme value probability paper.

b) Estimate graphically 100 year and 500 year flood. Take mean and standard deviation of Gumbel's reduced variate as 0.518 and 1.041 respectively.

τ.

a). How would you determine optimum number of rain gauges to be installed in a given 124 [4] catchment? 1 INCESSIVE TO THE

[4]

(Nu

[8]

[8]

[8]

[4×4

- Explain the stream flow measurement by velocity area method. b)
- Authoritie . c) During a high flow, water surface elevation of a small stream were noted at two stations A and B, 10km apart. Elevations and other silent features are given below.

Section	Water Surface Selevation (m)	Area of cross section (m ²)	Hydraulic radius (m)	Remarks
A	104.771		2,7	A is U/S of B.
В	104.500	93	3.1	Coeff. N = 0.20

Take the eddy coefficient of 0.30 for gradual expansion and 0.10 for gradual contraction. Estimate the discharge in the stream.

- The second second state of the second s a) The ordinates of a rainfall mass curve of a storm over a basin of area 850km² measured in mm at one hour interval are: [12]
 - 0, 10, 22, 30, 39, 45.5, 50, 55.5, 60, 64 and 68
- esentia da la contella a contella If the infiltration during this storm can be represented by Horton's equation with $f_0 = 6.5 \text{ mm/h}$, $f_c = 1.5 \text{ mm/h}$ and K = 0.15/h, estimate the resulting runoff volume. [12] b) Discuss any two procedures available to estimate the missing precipitation records. [4]
- 5. a) Describe the methods of recharging underground water storage.
 - in which indering the S PERSONAL PERSONAL OR AN b) 30cm wall penetrates 20m below the static water table. After 24 hrs. of pumping at 5000 litres per minutes, the water level in the test well of 100m away is lowered by 0.5m and in a well of 30m away the drawdown is 1m. What is the transmissibility of the aquifer and also determine the drawdown in the main well
- Write short notes on:
- a) Rating curve
- b) Penmann's equation
- c) Flood mitigation
- in Engineering d) Application of hydrology in Engineering

63	TRIBHUVAN UNIVERSITY	
INST	ITUTE OF ENGINEERING	
Exami	nation Control Divisio	n
	2064 Poush	

Exam.	Regular/Back									
Level	BE	Full Marks	80							
Programme	BCE	Pass Marks	32							
Year / Part	III / II	Time	3 hrs.							

Subject: - Engineering Hydrology

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt any Five questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. The stream flows due to three successive storms of 4.5, 6.5 and 3.5cm of 6 hours duration each on basin is given below. The area of the basin is 45.4 km². Assuming the constant base flow of 20 m³/s and an average storm loss of 0.25 cm/hr.

											1		
Time	0	6	12	18	24	30	36	42	48	54	60	66	72
Discharge	25	105	365	925	1255	985	739	555	403	265	165	75	25
(cumec)	23	105	505	,25	1200	705	127	555	-00	205	105	12	

a) Derive the ordinates of a 6-hour unit hydrograph of the basin.

b) Calculate the flood hydrograph for storms of 11.5cm of 12 hours duration rainfall.

The following peak discharge represents the annual maximum flows for the of a river from year 1961 to 1975:

68 67 Year 61 62 63 64 65 66 Flows 2740 3650 4510 7060 4550 3500 3420 3880 (m^3/s) 69 70 72 73 74 75 71 Year Flows 2410 4350 2660 8030 3090 4080 2930 (m^3/s)

a) Calculate the 10-, 50-, and 100-year discharge assuming Gumbel distribution.

b) Calculate the 2-, 10-, 50-, and 100-year discharge using Weibull Plotting position method.

Note: The reduced mean and reduced S.D. for 15 samples are 0.53 and 1.10 respectively.

- 3. a) Write down the factors affecting evaporation.
 - b) Calculate daily potential evaporation by Penman method from an area having the following characteristics.

Latitude = 30°N. Elevation = 300m above mean sea level, mean monthly temperature = 15°c, relative humidity = 70%, mean observed sunshine hour = 9h, wind velocity at 2m height = 50 km/day and the ground surface is observed with green grass. Furthermore,

Saturated vapor pressure at 15°C = 13.4mm of Hg Slope of saturated vapor pressure = 1.24 mm/°C $= 0.49 \text{ mm/}^{\circ}\text{C}$ Psychrometric constant $= 2.01 \times 10^{-9} \text{ mm/day}$ Boltzman constant = 0.15Albedo

[4]

[16]

[16]

[12]

Cto tion	Ampuol	Isc	Dolugon	
ID	Rainfall (mm)	Interval (m)	Area enclosed (sqkm)	Area (%)
A	2256	1.80-2.0	1.25	15
B	2534	2.00-2.2	0.75	31
C	2123	2.2-2.4	3.15	21
D	1867	2.4-2.6	0.85	11
E	2000	2.6-2.8	2.0	22

4. a) Calculate the average rainfall over a catchment of area 8 km² by three methods.

b) Compute the discharge of a stream with following data. A current meter with calibration equation V = 0.30N + 0.032 where V in m/s and N in Revolutions/s is used to measure the velocity.

Distance (m)	0	2	4	6	8	10	12	14	16	18	20	22
Depth (m)	0	1	4.3	7.2	8,5	7.4	5.6	4.7	3.5	2.1	1.4	0
Revolutions/second at 0.2d	0	3	4	6	6.5	7	6	5.5	5	3	2	0
Revolutions/second at 0.8d	0.	2	3	5	5.5	6.5	6.3	4.8	4	2.5	1.5	0

5. a) The average rainfall over 45ha of watershed for a particular storm was as follows.

Time (hr) 0 2 3 4 5 6 1 7 Rainfall (cm) 0 0.5 3.25 2.5 1.5 0.5 1 0

The volume runoff from this storm was determined as 2.25ha-m. Establish the φ -index.

- b) Write down the assumption of Dupuit formula and derive a well discharge equation for steady state condition for confined and unconfined aquifer.
- 6. Write down four short notes:
 - a) Mass curve and its uses
 - b) Development of hydrology in Nepal
 - c) Ordinary flood, standard flood and probable maximum flood
 - d) S curve and its uses
 - e) Pumping and recuperation test

[8]

[8]

[6]

[10]

 $[4 \times 4]$

West of the second s