Examination Control Division 2076 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Computer Organization and Architecture (CT 603)

✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. [6] 1. Draw the instruction cycle state diagram with example. 2. Write down the code to evaluate $Y = (A - B/C)^*[D + (E*G)]$ in three address, two address, one address and zero address instruction formats. [8] 3. Define addressing modes. Mention the different types of addressing modes and [2+6]comparison between them. 4. How address of micro instruction is generated by next address generator in control unit? [8] Explain with suitable diagram. 5. Explain four stage instruction pipeline and also draw a time-space diagram for four T107 segments having six tasks. 6. Explain the Booth's algorithm for multiplication. Multiply 10 × (-5) using Booth's [5+5] multiplication algorithm. [6] 7. Comparison between restoring and non-restoring division algorithms with example. 8. Define cache mapping techniques. Explain direct mapping technique with suitable diagram. Why replacement algorithm is necessary in associative mapping? Justify. [2+4+4] 9. Comparison between program I10, Interrupt driven I10 and direct memory access. Why [8+2]data communication processor is required in an I10 organization. [4]

10. Discuss about hypercube interconnection network with example.

Examination Control Division 2075 Chaitra

10. Explain inter-processor synchronization with example.

Exam.	Re	gular / Back	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[4]

Subject: - Computer Organization and Architecture (CT 603)

✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. Define computer architecture. Discuss the limitations of using single bus system to connect different devices. What does width of address bus represent in a system? [2+2+2] 2. Design an 2-bit ALU that can perform subtraction, AND, OR and XOR. [8] 3. Write a code for Y=(A+B)/C + D/(E*F) using three address, two address, one address and [8] zero address instruction format. 4. Differentiate hardwired and micro-programmed control unit. Draw and explain block diagram of micro-programmed sequencer for control memory. [10] 5. Derive expression showing speed up ratio equals number of segments in pipeline. Discuss in detail about data dependency problem that arises in pipelining along with its solution. [3+5]6. Write an algorithm for non restoring division. Perform the 10/3 using restoring division [3+7]algorithm. 7. Multiply -6×-11 using Booths Multiplication algorithm. [6] 8. Write characteristics of memory system? Suppose main memory has 64 blocks and cache memory has 8 blocks when 10 blocks of main memory are used, show how mapping is [4+6] performed in direct mapping technique. 9. Explain three reasons behind the requirement of I/O interfaces. Why memory address spaces are reduced memory mapped I/O? Describe DMA controller with suitable block [3+2+5] diagram.

Examination Control Division 2076 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[4]

Subject: - Computer Organization and Architecture (CT 603)

✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate **Full Marks**. ✓ Assume suitable data if necessary. 1. What is PCI? Explain the design goals and performance metrics for a computer system regarding its organization and architecture. [1+5] 2. Write the arithmetic statement Y=(W+X)*(Y-Z) using Zero, One, Two and Three address instruction format. [8] 3. Explain the different types of addressing modes and compare each of them. [8] 4. Explain block diagram of micro-programmed control organization. Describe various fields in micro-instruction format with diagram showing different fields. [4+6] 5. Describe the hazard in a pipeline. Explain the different types of hazards. How can these be overcome? [2+4+2] 6. Write an algorithm of booth multiplication. Perform 8×4 using booth multiplication algorithm. [10] 7. Differentiate between restoring division and non-restoring division and non-restoring division algorithm. [6] 8. Describe cache operation in briefly. Explain about associative mapping technique. Give reasons why replacement algorithm is not required in direct mapping technique. [2+6+2] 9. Explain the DMA operation with block diagram. How does DMA have request over the CPU when both request a memory transfer? [8+2]10. Discuss about tightly-coupled multiprocessor with block diagram.

Examination Control Division 2074 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III/I	Time	3 hrs.

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate Full Marks.
- ** Assume suitable data if necessary.

1.	Explain instruction cycle state diagram with interrupt.	[6]
2.	and 0 address instruction formats to perform given operation.	[8]
	X = (A*B/C) - (D+E/F)	
3.	Describe various fields in microinstruction format. Explain about the sequencing techniques used in microinstruction format with necessary diagram.	[10]
4.	microprogram for fetch cycle.	[10]
*****	Explain arithmetic pipeline with an example of 4 segments. Describe different types of array processing.	[6+4]
6	Write an algorithm flow chart and hard ware design of restoring division with example.	[10]
7	Draw a flow chart for floating point multiplication algorithm.	[4]
	Explain about associative mapping technique. Give reasons why replacement algorithm is required in associative mapping technique?	[8]
9	. Explain the block diagram of DMA controller and also explain how DMA is used to transfer data from peripheral.	[10]
1	 Differentiate between tightly coupled multiprocessors and loosely coupled multiprocessors. 	[4]

Examination Control Division 2073 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III/I	Time	3 hrs.

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
 ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

٠.	1. Explain instruction cycle state diagram with interrupt.	[6]
	2. Write a code for $Y = A/(B+C) + (D+E)*F$ using three address, two address, one address and zero address instruction format.	[8]
	3. Explain different types of data manipulation instructions with examples.	[10]
	4. Why is micro-programmed control unit more flexible as compared to hardwired control unit? Explain the sequencing technique used in control memory.	[10]
	5. Explain the function of four segment pipeline and also draw a space diagram for four segment pipeline with example.	[10]
	6. Write an algorithm for division of floating point number.	[4]
	7. Explain Booth algorithm of multiplication with hardware implementation diagram and multiply-10×6.	[10]
	8. Explain major characteristics of memory. Explain LRUC (Least Recently Used) replacement policy with example.	[8]
•	9. Why I/O processor is necessary in an input-output organization? Explain about DMA control with necessary diagram.	· [10]
	10. Design for 4×4 omega switching network and show the switch setting required to connect input 3 to output 1.	[4]

Examination Control Division 2073 Chaitra

Exam.		Regular	1 1
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III/I	Time	3 hrs.

Subject: - Computer Organization and Architecture (CT603)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
 ✓ Attempt All questions.
 ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

input 3 to output 1.

[6] 1. Explain instruction cycle state diagram with interrupt. 2. Write a code for Y = A/(B+C) + (D+E)*F using three address, two address, one address [8] and zero address instruction format. 3. Explain different types of data manipulation instructions with examples. [10] 4. Why is micro-programmed control unit more flexible as compared to hardwired control [10] unit? Explain the sequencing technique used in control memory. 5. Explain the function of four segment pipeline and also draw a space diagram for four [10] segment pipeline with example. [4] 6. Write an algorithm for division of floating point number. 7. Explain Booth algorithm of multiplication with hardware implementation diagram and [10] multiply-10×6. 8. Explain major characteristics of memory. Explain LRUC (Least Recently Used) [8] replacement policy with example. 9. Why I/O processor is necessary in an input-output organization? Explain about DMA [10] control with necessary diagram. 10. Design for 4×4 omega switching network and show the switch setting required to connect [4]

Examination Control Division 2074 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III/I	Time	3 h r s.

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the mangin indicate Full Marks.

 Assume suitable data if necessars.

1.	Explain instruction cycle state diagram with interrupt.	[6]
2.	Write codes using 3, 2, 1 and 0 address instruction formats to perform given operation.	[8]
	X = (A * B/C) - (D + E/F)	
3.	Describe various fields in microinstruction format. Explain about the sequencing techniques used in microinstruction format with necessary diagram.	[10]
4.	Explain microinstruction format showing all the fields in detail. Write symbolic microprogram for fetch cycle.	[10]
	Explain arithmetic pipeline with an example of 4 segments. Describe different types of array processing.	[6+4]
6.	Write an algorithm flow chart and hard ware design of restoring division with example.	[10]
7.	Draw a flow chart for floating point multiplication algorithm.	[4]
8.	Explain about associative mapping technique. Give reasons why replacement algorithm is required in associative mapping technique?	[8]
9.	Explain the block diagram of DMA controller and also explain how DMA is used to transfer data from peripheral.	[10]
10.	Differentiate between tightly coupled multiprocessors and loosely coupled multiprocessors.	[4]

Examination Control Division 2072 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Computer Organization and Architecture (CT603)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

	ringle bus system to connect different devices in any given system.	+2+2]
2.	write codes for given operation disting	[4+8]
•	X=(A-B*F)*C+D/E	[6]
3.	Differentiate between RISC and CISC.	-
4.	What factors cause micro-programmed control unit to be selected over hardwired control unit. Explain with relevant block diagram, how address of control memory is selected in micro-programmed control unit. Describe Flynn's classification. Explain control pipeline hazard and its solutions.	[3+7] [4+6]
5. 6.	Explain Booth's multiplication hardware algorithm with diagram. Multiply -3x-9 using Booth's multiplication algorithm.	[5+5] [4]
7.	Draw the flowchart for division of floating point numbers.	[2+6]
8.	Draw the memory hierarchy. Explain direct cache mapping with its ments and dements.	
9.	Letwoon Isolated I/O and Memory-mapped I/O. Describe DIMA controlled	
•	with suitable mechanism?	[4]

10. Discuss about inter process synchronization with the suitable mechanism?

Examination Control Division 2073 Shrawan

Exam.	New Back (2066 & Later	Batch
Level	BE		
Programme	BEX, BCT	Pass Marks	32
Year / Part	III/I	Time	3 hrs.

[5+5]

[4]

Subject: - Computer Organization and Architecture (CT603)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All questions.

selection take place?

- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- 1. What do you mean by interconnection structure? Explain different types of interconnections indeed required in Computer Architecture. [2+4]2. Write a code for Y = A*(B+D/C)+(G*E)/F using three addresses, two address, one address and zero address instruction format. [8] 3. Following instructions are given: [10] i) LDA 2000H ii) MVI B, 32H iii) STAX D iv) MOV A. B Which addressing modes are used in the above instructions? Explain briefly about them. 4. Explain microinstruction format used in microprogramming Control unit and write micro program for fetch cycle. [6+4] 5. Explain in detail how the arithmetic pipeline increases the performance of a system. [7] 6. "RISC has the ability to use efficient instruction pipeline". Justify the statement. [3] 7. Explain signed binary division algorithm. Use the non-restoring division algorithm to devide 15 by 4. [8] 8. Explain floating point addition and subtraction algorithm with example. [6] 9. Describe how set associative mapping combines the feature of direct and associated mapping technique. Explain different write policy techniques in cache memory. [5+3]10. Why input-output processor is needed in an input-output organization? How does a computer know which device issued the interrupt; if multiple devices, how does the

11. Describe how the multiprocessor systems increase the performance level and reliability.

Examination Control Division 2071 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. What are the major differences between computer architecture and computer organization? What does the width of data bus and address bus represent in a system? Why is bus hierarchy required? [2+2+2]
- 2. Explain the general organization of register in CPU. Describe the operation of LD (load) instruction under various addressing modes with syntax. [6+4]
- 3. What are the different types of instructions? How can you perform $X = (A+B) \times (C+D)$ operation by using zero, one, two and three address instruction format. Assume A, B, C, D, X are memory address.
- 4. What is address sequencing? Explain the selection of address for control memory with its block diagram. [3+7]
- 5. Explain the Arithmetic pipeline and instruction pipeline with example. [10]
- 6. Draw the flowchart for floating point Division.
- 7. Design a booth multiplication algorithm hardware. Multiply 5 and -6 using booth multiplication algorithm. [4+4]
- 8. Explain cache organization. Explain the cache mapping techniques with example. [4+6]
- 9. Highlight the role of I/O interface in a computer system. Describe the drawbacks of programmed I/O and interrupt driven I/O and explain how DMA overcomes their drawbacks.[4+6]
- 10. How can multiprocessor be classified according to their memory organization? Explain. [4]

Examination Control Division 2072 Kartik

-	Exam.	New Back (2	066 & Later	Batch)
1	Level	BE	Full Marks	80
-	Programme	BEX, BCT	Pass Marks	32
	Year / Part	III/I	Time	3 hrs.

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1.	Differentiate between computer architecture and computer organization. Explain the computer functions with different cycles.	[3+3]
2.	Write a code for $Y = (A+B)*(C+D)+G/E*F$ using three address, two address one address and zero address instruction format.	[8]
3.	Mention the different types of addressing mode and compare each other.	[10]
4.	Explain the address sequencer with the help of a block diagram. Explain about microinstruction format in detail.	[5+5]
5.	Define pipeline and explain its types. Describe different pipeline hazards with example.	[4+6]
6.	Draw the flowchart for restoring division method.	[4]
7.	Explain Booth multiplication algorithm. Multiply -6×12 using Booths algorithm.	[4+6]
8.	Draw the memory hierarchy. Explain Associative Cache Mapping with example.	[2+6]
9.	What are the different types of priority interrupt? Explain the communication between CPU and IOP with necessary block diagram.	[4+6]
1.0	Evaloin about multiprocessor and multiprocessing in built	F 47

01/10

36 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2070 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

- ✓ Candidates are required to give their answers in their own words as far as practicable.

 ✓ Attempt All questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

1.	Explain the interconnection of CPU with Memory and I/O devices along with different operations over them.	[3+3]
2.	Write down the $Y = A/B+(C\times D) + F(H/G)$ equation in three address, two address, one address and zero address instruction.	[8]
3.	Mention the different types of addressing modes. Compare each of them with algorithm as well as advantages and disadvantages.	[10]
4.	Differentiate between hardwired and micro-programmed control unit. How does a sequencing logic work in micro-programmed control unit to execute a micro-program?	[4+6]
5.	Explain the arithmetic pipeline and instruction pipeline with example.	[10]
6.	Explain the non-restoring division along with its algorithm, flowchart and example.	[8]
7.	Explain the Booth algorithm and multiply $Y = 8 \times 9$ using Booth algorithms.	[6]
8.	Mention the 'characteristics of computer memory. Differentiate between associative mappings and set associative mapping with example.	[3+5]
9.	How does DMA overcome the problems of programmed I/O and interrupt-driven I/O techniques? Explain.	[5]
10	. Why IOP is use in I/O organization? Explain.	[5]
11	. Explain the characteristics of multiprocessors.	[4]

Examination Control Division 2071 Shawan

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	80		
Programme	BEX, BCT	Pass Marks	32		
Year / Part	III / I	Time	3 hrs.		

Subject: - Computer Organization and Architecture (CT603)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1.	What do you understand by Bus Interconnection? What are the driving factors behind the need to design for performance?	[2+4]
2.	Explain Instruction Format with its types? Illustrate the code to evaluate to evaluate: $Y = (A+B) * (C+D)$ using three address, two address, one address and zero address instruction formats.	[2+6]
3.	Describe the instruction cycle state diagram? Design a 2-Bit ALU that can perform addition, AND, OR operations.	[3+3]
4.	Explain the organization of a control memory. Discuss the microinstruction format with the help of a suitable example.	[4+6]
5.	Discuss about parallel processing? How parallel processing can be achieved in pipelining, explain it with time-space diagram for four segments pipeline having six tasks.	[4+6]
6.	Write down the detail algorithm of Booth Multiplication. Illustrate the multiplication of (9) and (-3) using 2's complement method.	[5+5]
7.	What is Memory Hierarchy and why it is formed in computer system? Explain the Direct cache memory mapping technique using organization diagram and appropriate example.	[2+6]
8.	What are the functions of I/O Module? What is the purpose of priority interrupt; explain priority interrupt types with key characteristics.	[3+7]
9.	Differentiate the following	[4x3]
	a. RISC and CISC	

i. RISC and CISC

b. Restoring and Non-Restoring Division

c. Crossbar Switch and Multistage Switching Network

Examination Control Division 2070 Ashad

Exam.	enaveriese	(166 & Eater	Bariologic
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[4]

Subject: - Computer Organization and Architecture (CT603)

✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate Full Marks. Assume suitable data if necessary. 1. What is performance balance and why is it required? Explain different elements of bus [6] design. 2. Define the addressing mode and explain the different types of addressing modes with [10] example. 3. What are the stages of ALU design? Explain with the example of 2-bit ALU performing [8] addition, subtraction, OR and XOR. 4. What are the differences between hardwired implementation and micro-programmed implementation of control unit? Explain with steps involved when you are designing [4+6] micro-program control unit. 5. What is instruction hazard in pipeline? What is the four segment instruction pipeline? [2+8]Explain with example. 6. How division operation can be performed? Explain with its hardware implementation. [10] [4] Draw a flowchart of floating point subtraction. 8. What are the major differences between different cache mapping techniques? Suppose main memory has 32 blocks and Cache memory has 8 blocks when 10 blocks of main memory are used, show how mapping is performed in direct mapping technique. [6+2]9. Differentiate between programmed I/O, interrupt-driven I/O and direct memory access [10] (DMA).

Examination Control Division 2069 Chaitra

	Exam.		Regular	
-	Level	BE	Full Marks	80
	Programme	BEX, BCT	Pass Marks	32
	Year / Part	III / I	Time	3 hrs.

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

	1.	Differentiate between computer organization and architecture. What do you mean by bus interconnection?	
	2.	What are the different types of instruction formats? Explain with example.	[3+3]
	3.	Define data manipulation instruction. Explain the logical and bit manipulation instruction with mnemonic code.	
	4.	What is address sequencing in control unit? Explain with necessary figure.	[3+5]
	_	Tyle 4.	[10]
٠,	5,	What is vector processing? How pipelining improves the performance of a computer? Explain with example.	
		그는 사용을 가는 경기에 있는 사람들이 가는 사람들이 되었다. 그 사람들은 사람들이 가장 살아 있다면 살아 되었다.	[10]
1.0	6.	Explain the restoring division algorithm and hardware design with example.	[10]
	7.	Draw the flowchart of floating point multiplication.	
		What is cache memory? What are the different ways the cache can be mapped? Explain with example.	[4]
13	9.	What are the functions of I/O Madalo XIII	[2+6]
•	- ,•, ,	What are the functions of I/O Module? Why priority interrupt is needed for data transmission between CPU and I/O device. Explain the types of priority interrupt in detail.	
	10		[10]
	10.	Compare and contrast the interconnection structures used in multiprocessing environment.	
			[4]

Examination Control Division . 2069 Ashad

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

Subject: - Computer Organization and Architecture (CT 603)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
 ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1.	Explain bus hierarchy and why it is required. Describe method of bus arbitration.	[6]
2.	Write down the code to evaluate Y=AB+(C/D)+E(F/G) in three address, two address, one address and zero address instruction format.	[8]
3.	Compare RISC and CISC architecture.	[5]
4.	What do you mean by data manipulation instruction? Explain the logical and bit manipulation instruction with mnemonics code.	[5]
5.	Design microinstruction format, symbolic and binary micro program that can perform fetch cycle, indirect cycle and add operation. Also design and describe sequencing technique that is used in control unit.	[10]
6.	What is arithmetic pipelining? Explain with example.	[6]
7.	How can we increase the performance of a computer by adopting vector computation?	[4]
8.	Describe floating point addition and subtraction flow chart.	[6]
9.	How division of signed integers can be performed? Explain with example.	[8]
10.	What do you mean by mapping function? Why replacement algorithm is used in associative and set associative mapping? Explain with example.	[2+6]
11,	Describe interrupt driven I/O. Compare interrupt driven I/O with programmed I/O. Explain how data transfer is performed with direct memory access (DMA).	+3+4]
12.	Discuss the difference between tightly coupled multiprocessor and loosely coupled multiprocessors?	[4]

Examination Control Division 2068 Chaitra

Exam.		kegijar <i>a da</i>	
Level	BE	Full Marks	80
Programme	BEX, BCT	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[4]

Subject: -Computer Organization and Architecture (CT 603)

1	Candidates are required to give their answers in their own words as far as practicable.	
✓.	Attempt All questions.	
√	The figures in the margin indicate <u>Full Marks</u> .	
√	Assume suitable data if necessary.	
1.	Explain the functional view and four types of operations used in computer.	[6]
2.	What are most common fields in an instruction? How can you perform X=(E+F)*(G+H) operation by using zero, one, two and three address instruction format. Assume that E, F,	FO 1
	G, H and X are memory addresses.	[8]
3.	Define addressing mode. Explain different types of addressing modes with example.	[10]
4.	Explain various fields in micro-instruction format with neat and clean block diagram. Describe how address of control memory is selected.	[3+7]
5.	What are the hazards in instruction pipelining? How can they be resolved? Explain.	[10]
6.	Explain Booth algorithm. Use the Booth algorithm to multiply 23(multiplicand) by -21(multiplier), where each number is represented using 6 bits.	[8]
7.	Explain floating point division algorithm.	[6]
8.	Explain cache read operation. What are the demerits of direct mapping technique used in cache design and describe in details any one of the mapping technique that solves these problems.	[8]
9.	Why input-output processor is needed in an input-output organization? Explain with block diagram.	[10]

10. Define the multiprocessor and its characteristics.