TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Examination Control Division 2076 Chaitra

Exam.	Re	gular	
Level	BE	Full Marks	80
Programme	All (Except BAR)	Pass Marks	32
Year / Part	N/I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH 501)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Prove that
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3 \text{ by using the properties}$$

of determinants.

[5]

2. Prove that every square complex matrix can uniquely be expressed as a sum of a Hermitian and a skew-Hermitian matrix.

[5]

[5]

3. Reduce the matrix $\begin{vmatrix} 3 & -2 & 1 & 2 \\ 5 & -2 & -9 & 14 \\ 4 & 3 & 4 & 9 \end{vmatrix}$ into normal form and hence find its rank.

4. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$ and also find its modal matrix

[5]

- matrix.
- 5. If $\overrightarrow{F} = 3x^2yz^2 \overrightarrow{i} + x^3z^2 \overrightarrow{j} + 2x^3yz \overrightarrow{k}$, show that $\int_c \overrightarrow{F} \cdot dr$ is independent of the path of integration. Hence evaluate the integral on any path C from (0, 0, 0) to (1, 2, 3).

[5]

6. Verify Green's Theorem in plane for $\int_{c} [(x-y) dx + (x+y) dy]$ where c is the boundary of the region enclosed by $y^2 = x$ and $x^2 = y$.

[5]

7. Evaluate $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} ds$ where $\overrightarrow{F} = 4x \overrightarrow{i} - 2y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ taken over the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0, z = 3.

[5]

- 8. Evaluate $\int_{c}^{\rightarrow} \vec{F} \cdot d\vec{r}$, where c is the rectangle bounded by the lines $x = \pm a$, y = 0, y = n and $\overrightarrow{F} = (x^2 + v^2) \overrightarrow{i} - 2xv \overrightarrow{i}$ [5]
- 9. State the condition for existence of Laplace transform. Obtain the Laplace transform of:
 - (b) $\frac{\cos at \cos bt}{t}$ [1+1.5+2.5]

10. Find the inverse Laplace transform of:

$$a) \frac{s+3}{(s^2+6s+13)^2} \qquad b) \frac{e^{-2s}}{(s+1)(s^2+2s+2)}$$
 [2+3]

- 11. Solve the differential equation $y''+2y'-3y=\sin t$ under the conditions y(0)=y'(0)=0 by using Laplace transform. [5]
- 12. Obtain the Fourier series to represent the function $f(x) = e^x$ for $-\pi \le x \le \pi$. [5]
- 13. Obtain the half range cosine series for the function $f(x) = x \sin x$ in the interval $(0, \pi)$. [5]
- 14. Use Simplex method to solve following LPP:

Maximize,
$$P = 30x_1 + x_2$$

Subject to:
$$2x_1 + x_2 \le 10$$

 $x_1 + 3x_2 \le 10$
 $x_1, x_2 \ge 0$ [7]

- 15. Use Big M method to solve following LPP:
- 16. Minimize, $Z = 4x_1 + 2x_2$

Subject to:
$$3x_1 + x_2 \ge 27$$

 $-x_1 - x_2 \le -21$
 $x_1 + 2x_2 \ge 30$
 $x_1, x_2 \ge 0$ [8]

Examination Control Division 2075 Chaitra

Exam.	Reg	ular / Back	
Level	BE	Full Marks	80
Programme	All except BAR	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

[5]

Subject: - Engineering Math III (SH 501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. If
$$\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0$$
, where $a \neq b \neq c$ show that $abc = 1$. [5]

- 2. If A is a square matrix of order n, prove that $A(adj. A) = (adj. A)A = |A|I_n$, where I_n is a unit matrix having same order as A.
- 3. Test the consistency of the system by matrix rank method and solve completely if found consistent: x+2y-z=3, 2x+3y+z=10, 3x-y-7z=1 [5]
- 4. State Cayley-Hemilton Thorem and verify it for the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ [1+4]
- 5. A vector field is given by $\vec{F} = \sin y \vec{i} + x(1 + \cos y) \vec{j}$. Evaluate the line integral $\int_{c} \vec{F} \cdot d\vec{r}$ over the circular path c given by $x^2 + y^2 = a^2$, z = 0. [5]
- 6. State and prove Green's Theorem in plane. [1+4]
- 7. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant. [5]
- 8. State Stoke's theorem. Evaluate $\oint_c (xydx + xy^2dy)$ by Stoke's theorem taking c to be a square in the xy-plane with vertices (1,0),(-1,0),(0,1) and (0,-1).
- 9. Find the Laplace transform of: [2+3]
 - i) te^{-t}sint
 - ii) $\frac{\cos 2t \cos 3t}{t}$
- 10. Find the inverse Laplace transform of: [2+3]
 - i) $\frac{s+2}{(s+1)^4}$
 - ii) $\cot^{-1}(s+1)$
- 11. Solve the differential equation y"+y=sin3t, y(0)=y'(0)=0 by using Laplace transform. [5]
- 12. Define Fourier Series for a function f(x). Obtain Fourier series for $f(x)=x^3$; $-\pi \le x \le \pi$. [5]
- 13. Express $f(x)=e^x$ as the half range Fourier Sine series in 0 < x < 1. [5]
- 14. Find the maximum and minimum values of the function $z = 50x_1 + 80x_2$ subject to: $x_1 + 2x_2 \le 32$, $3x_1 + 4x_2 \le 84$, $x_1x_2 \ge 0$; by graphical method. [5]
- 15. Solve the following Linear Programming problem using big M method: [10]

Maximize $P = 2x_1 + x_2$

Subject to: $x_1+x_2 \le 10$

$$-x_1+x_2 \ge 2$$

 $x_1, x_2 \ge 0$

g of Market Schools The American Commence of the American American Schools School Schools Schools Schools Schools Schools School Sc

Examination Control Division 2076 Ashwin

Exam.		Back	7.2
Level	BE	Full Marks	80
Programme	All except BAR	Pass Marks	32
Year / Part	11/1	Time	3 hrs.

Subject: - Engineering Mathematics III (SH 501)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Prove that:
$$\begin{vmatrix} (b+c)^2 & c^2 & b^2 \\ c^2 & (c+a)^2 & a^2 \\ b^2 & a^2 & (a+b)^2 \end{vmatrix} = 2(ab+bc+ca)^2$$
 [5]

- Prove that the necessary and sufficient condition for a square matrix A to possess an inverse is that |A| ≠ 0.
- 3. Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ by reducing it to normal form. [5]
- 4. State any two properties of eigen values of a matrix. Obtain eigen values and eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ [1+4]
- 5. Prove that the line integral $\int_{A}^{B} \vec{F} \cdot d\vec{r}$ is independent of path joining any two points A and B
 - in the region if and only if $\int_{C} \vec{F} \cdot d\vec{r} = 0$ for any simple closed curve C in the region. [5]
- 6. State Green's Theorem and use it to find the area of the curve $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$. [1+4]
- 7. Use Gauss' divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$ where

$$\vec{F} = (2xy + z)\vec{i} + y^2\vec{j} - (x + 3y)\vec{k} \text{ and S is the surface bounded by the plane } 2x + 3y + z = 6,$$

$$x = 0, y = 0, z = 0.$$
[5]

- 8. Verify Stoke's Theorem for the vector field $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ over the upper half of the sphere $x^2 + y^2 + z^2 = 1$ bounded by its projection on xy-plane. [5]
- 9. Find the Laplace transform of:
 - i) t²cosat
 - ii) $\frac{1-\cosh(at)}{t}$

10. Find the inverse Laplace transform of:

$$[2+3]$$

i)
$$\frac{e^{-\pi s}(s+1)}{s^2+2s+2}$$

- ii) $\tan^{-1}\frac{2}{s}$
- 11. Solve the differential equation y"+3y'+2y=e^{-t}, y(0)=y'(0)=0 by applying Laplace transform.

[5]

12. Find the Fourier Series of the function $f(x) = |\sin x|$ for $-\pi \le x \le \pi$.

[5]

13. If $f(x) = 1x-x^2$ in (0,1), show that the half range sine series for f(x) is

$$\frac{8l^2}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin(2n+1) \frac{\pi x}{l}.$$
 [5]

- 14. Find the maximum and minimum values of the function z=20x+10y subject to: $x+2y\le 40$, $3x+y\ge 30$, $4x+3y\ge 60$, $x,y\ge 0$ by graphical method. [5]
- 15. Solve the following linear programming problem using big M method:

Maximize $P=2x_1+5x_2$ subject to : $x_1+2x_2 \le 18$

$$2x_1 + x_2 \ge 21$$
$$x_1, x_2 \ge 0.$$

[10]

Examination Control Division 2074 Chaitra

Exam.	R	egular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	II/I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. If
$$\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0$$
 where $a \neq b \neq c$; apply properties of determinant to show abc = 1. [5]

2. If A be an $n \times n$ matrix, prove that

Adj (A) .
$$A = A$$
 . (AdjA) = $|A|I$ where I is an $n \times n$ unit matrix.

[5]

3. Find the rank of the following matrix by reducing it into normal form:

$$\begin{pmatrix} 3 & 1 & 4 \\ 0 & 5 & 8 \\ -3 & 4 & 4 \\ 1 & 2 & 4 \end{pmatrix}$$
 [5]

4. Find the modal matrix for the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 3 \\ 2 & 1 & -1 \end{pmatrix}$$
 [5]

5. State and prove Green's theorem in plane.

[5]

- 6. Find the total work done in moving the particle in a force field given by $\overrightarrow{F} = \overrightarrow{Siny} \ \overrightarrow{i} + x(1 + \cos y) \ \overrightarrow{j}$ over the circular path $x^2 + y^2 = a^2$, z = 0. [5]
- 7. Evaluate $\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{s}$ where $\overrightarrow{F} = x \overrightarrow{i} y \overrightarrow{j} + z \overrightarrow{k}$ and s is the surface of the cylinder $x^2 + y^2 = a^2$, 0 < z < b. [5]
- 8. Verify Stoke's theorem for $\overrightarrow{F} = (x^2 + y^2) \overrightarrow{i} 2xy \overrightarrow{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$. [5]
- 9. Obtain Fourier series for $f(x) = x^3$ in the interval $-\pi \le x \le \pi$.
- 10. Express $f(x) = e^x$ as a half range Fourier Cosine Series in 0 < x < 1.
- 11. State existence theorem for Laplace Transform. Obtain the Laplace transform of

a)
$$te^{-t} sint$$
 b) $\frac{e^{-at} - e^{-bt}}{t}$ 1+2+2]

12. Find the inverse Laplace transform of:

a)
$$\frac{1}{s^2 - 5s + 6}$$

b)
$$\tan^{-1} \frac{2}{s}$$

[2+5.+2.5]

13. By using Laplace transform, solve the initial value problem:

$$y'' + 2y = r(t), y(0) = y'(0) = 0$$

Where $r(t) = 1, 0 < t < 1$
= 0, otherwise

[5]

14. Graphically maximize $Z = 5x_1 + 3x_2$ Subject to constraints

$$x_1 + 2x_2 \le 50$$

$$2x_1 + x_2 \le 40.$$

$$x_1, x_2 \ge 0$$

[5]

15. Solve the following Linear Programming Problem by simple method:

Maximize: Z = 4x + 3y

Subject to:
$$2x + 3y \le 6$$

$$-x +2y \le 3$$

$$2x + y \le 4$$

$$x, y \ge 0$$
.

[10]

Examination Control Division 2075 Ashwin

Exam.	Record Back William Back Willia				
Level	BE ·	Full Marks	80		
Programme	All (Except B.Arch.)	Pass Marks	32		
Year / Part	II/I	Time	3 hrs.		

[5]

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define the determinant as a function and using its properties. Show that

$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$
 [5]

- 2. If A and B are orthogonal matrices of same order, prove that the product AB is also orthogonal.
- 3. Test the consistency of the system x-2y+2z=4, 3x+y+4z=6 and x+y+z=1 and solve completely if found consistent. [5]
- 4. For a matrix $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$, find the modal matrix and the corresponding diagonal matrix. [5]
- 5. Prove that line integral $\int_{A}^{B} \overrightarrow{f} \cdot \overrightarrow{dr} = 0$ for any simple closed curve C in the region. [5]
- 6. Verify Green's theorem in the plane for $\int_C [3x^2 8y^2] dx + (4y 6xy) dy$ where C is region bounded by $y = x^2$ and $x = y^2$. [5]
- 7. Evaluate $\iint_S \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = 6z \vec{i} 4 \vec{j} + y \vec{k}$ and S is the region of the plane 2x + 3y + 6z = 12 bounded in the first octant. [5]
- 8. Evaluate using Gauss divergence theorem, $\iint_S \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = x^2 y \vec{i} + xy^2 \vec{j} + 2xyz \vec{k}$ and S is the surface bounded by the planes x = 0, y = 0, z = 0, x + 2y + z = 2. [5]
- 9. Obtain the Fourier Series to represent $f(x) = x x^2$ from $x = -\pi$ to $x = \pi$ and deduce that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$
 [5]

- 10. Obtain the half range Fourier Sine Series for $f(x) = \pi x$ in the range $0 < x < \pi$. [5]
- 11. State the conditions for existence of Laplace transform. Obtain the Laplace transform of:

(i)
$$e^{2t}\cos^3 2t$$
 (ii) $\frac{\cos 2t - \cos 3t}{t}$ [1+2+2]

12. Find the inverse Laplace transform of:

(i)
$$\frac{1}{(S-2)(S^2+1)}$$
 (ii) $\cot^{-1}(S+1)$ [2.5+2.5]

13. Solve the following intial value problem by using Laplace transform:

$$y'' + 4y' + 3y = e^{t}$$
, $y(0) = 0$; $y'(0) = 2$ [5]

14. Graphically maximize $Z = 7x_1 + 10x_2$

Subject to constraints:

$$3x_1 + x_2 \le 9$$

 $x_1 + 2x_2 \le 8$ [5]
 $x_1, x_2 \ge 0$.

15. Solve the following linear Programming Problem by simple method:

Maximize:
$$Z = 3x_1 + 5x_2$$

Subject to:

$$3x_1 + 2x_2 \le 18$$

 $x_1 \le 4, x_2 \le 6$
 $x_1, x_2 \ge 0.$ [10]

Examination Control Division 2073 Chaitra

Exam.	Re	gular	
Level	BE	Full Marks	80
Programme	All (Except B. Arch)	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

[5]

[5]

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Distinguish a matrix and a determinant. Use property of determinant to prove:

$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^{3}$$

- 2. Prove that the necessary and sufficient condition for a square matrix to posses an inverse is that it is non singular.
- 3. Find the rank of the matrix: [5]

$$\begin{pmatrix} 1 & 0 & -5 & 6 \\ 3 & -2 & 1 & 2 \\ 3 & -2 & -9 & 14 \\ 4 & -2 & -4 & 8 \end{pmatrix}$$
 by reducing it to normal form.

- 4. State Cayley-Hamilton theorem and use it to find inverse of the matrix $\begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{pmatrix}$ [5]
- 5. Find the work done by the force $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$ in displacement of a particle along the straight segment C from point (1,1,1) to the point (3,3,2).
- 6. State Gauss divergence theorem and apply it to evaluate $\iint_s \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = x \vec{i} + y \vec{j} + z \vec{k}$ and S is the surface of the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a.
- 7. State and prove Green's theorem in plane. [5]
- 8. Verify stokes theorem for the vector field $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ over the upper half of the surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection the xy-plane. [5]
- 9. Find the Fourier series to represent $f(x) = x x^2$ from $-\pi$ to π .
- 10. Find the half range Fourier sine series for $f(x) = e^{2x}$ in $0 < x < \pi$. [5]
- 11. Define Laplace transform of a function and state criteria of existence of a Laplace transform of a function. Find the Laplace transform of $f(t) = \frac{1-\cos 2t}{t}$ [1+1+3]

12. Find inverse Laplace transform of

[2+3]

(i)
$$\frac{1}{s(s+2)}$$

(i)
$$\frac{1}{s(s+2)}$$
 (ii) $tan^{-1}\left(\frac{1}{s}\right)$

13. Solve the following initial value problem using Laplace transform:

[5]

$$y''+4y'+3y=0$$
, $y(0)=3$, $y'(0)=1$

14. Use simplex method to solve the following LPP:

[10]

Maximum $z = 50x_1 + 80x_2$

Subject to,

$$x_1 + 2x_2 \le 32$$

$$3x_1 + 4x_2 \le 84$$

15. Graphically maximize

[5]

$$z = 7x_1 + 10x_2$$

Subject to,

$$3x_1 + x_2 \le 9$$

$$x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$

Examination Control Division 2074 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	ALL (Except B. Arch)	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

[5]

[5]

Subject: - Engineering Mathematics III (SH501)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. Use properties of determinant to show

 $\begin{vmatrix} x^2 & x^2 - (y - z)^2 & yz \\ y^2 & y^2 - (z - x)^2 & zx \\ z^2 & z^2 - (x - y)^2 & xy \end{vmatrix} = (x - y)(y - z)(z - x)(x + y + z)(x^2 + y^2 + z^2)$

2. Prove that every square matrix can be uniquely expressed as the sum of symmetric and a skew symmetric matrix.

3. Define eigen values and eigen vectors in terms of linear transformation with matrices as operator. Find eigen values of the matrix.
[5]

$$\begin{pmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{pmatrix}$$

4. Test the consistency of the system x+y+z=3, x+2y+3z=4, 2x+3y+4z=7 by using rank of matrix method and solve if consistent.

5. If \vec{F} is the gradient of some scalar point functions ϕ i.e $\vec{F} = \nabla \phi$, prove that the line integral is independent of the path joining any two points in the region and conversely. [5]

6. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = xy \vec{i} - x^2 \vec{j} + (x+z) \vec{K}$ and S is the region of the plane 2x + 2y + z = 6 bounded in the first quadrant. [5]

7. State and prove Green's theorem in plane. [5]

8. Apply Gauss' divergence theorem to evaluate $\iint_{s} \left[(x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{K} \right] \cdot \vec{n} \, ds$, where S is the surface of the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a.

9. Expand $f(x) = x \sin x$ as a Fourier series in $-\pi \le x \le \pi$.

- 10. Obtain half range cosine series for f(x) = x in the interval $0 \le x \le \pi$.
- 11. Find the Laplace transform of: [3+2]
 - i) t² cosat
 - ii) $\frac{\sin t}{t}$

12. State convolution theorem for inverse Laplace transform and use it to find the inverse Laplace transform of $\frac{S}{(S^2+4)(S^2+9)}$ [1+4]

13. Solve the following initial value problem by using Laplace transform: [5]

$$y''+2y'-3y = \sin t$$
, $y(0) = y'(0) = 0$

14. Graphically maximize [5]

$$Z = 7x_1 + 10x_2$$

Subject to constraints,

$$3x_1 + x_2 \le 9$$

$$x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$

15. Solve the following LPP by simplex method using duality of:

[10]

Minimize Z = 20x + 50y

Subject to:

$$2x + 5y \ge 12$$

$$3x + 7y \ge 17$$

$$x, y \ge 0$$

Examination Control Division 2072 Chaitra

Exam.	P. British R.	egular	
Level	BE	Full Marks	80
Programme	All (Except B. Arch)	Pass Marks	32
Year / Part	Π/Ι	Time	3 hrs.

[5]

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Use properties of determinants to prove:

$$\begin{vmatrix} a^{2} + 1 & ba & ca & da \\ ab & b^{2} + 1 & cb & db \\ ac & bc & c^{2} + 1 & dc \\ ad & bd & cd & d^{2} + 1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2} + d^{2}$$

- 2. Show that every square matrix can be uniquely expressed as the sum of symmetric and Skew-Symmetric matrices.
- 3. Test the consistency of the system x+y+z=3, x+2y+3z=4 and 2x+3y+4z=7 and solve completely if found consistent. [5]
- 4. State Cayley-Hamilton theorem and verify it for the matrix; $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$ [1+4]
- Prove that "The line integral ∫_EF.d r of a continuous function F defined in a region R is independent of path C joining any two points in R if and only if there exists a single valued scalar function φ having first order partial derivatives such that F = ∇φ". [5]
- 6. State Green's theorem and use it to find the area of astroid $x^{2/3} + y^{2/3} = a^{2/3}$ [5]
- 7. Evaluate $\iint_{s} \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and 's' is the surface of the plane x + y + z = 1 between the co-ordinate planes. [5]
- 8. Apply Gauss' divergence theorem to evaluate $\iint_{s} \overrightarrow{F} \cdot \overrightarrow{n} ds$ where

$$\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}$$
 and 's' is the surface the cube bounded by the planes $x = 0, x = a, y = 0, y = a, z = 0, z = a.$ [5]

9. Find the Laplace transform of:	[2+3]
i) $tSin^2 3t$ ii) $\frac{Sin 2t}{t}$	ro . 01
10. Find the inverse Laplace transform of:	[2+3]
i) $\frac{1}{s^2 - 3s + 2}$ ii) $\frac{1}{s(s+1)^3}$	
11. Apply Laplace transform to solve the differential equation:	[5]
$y''+2y'+5y=e^{-t}\sin t$, $x(0)=0$, $x'(0)=1$	
12. Find a Fourier series to represent $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$. Hence show that	
$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$	[5]
13. Develop $f(x) = \sin\left(\frac{\pi x}{l}\right)$ in half range Cosine Series in the range $0 < x < l$.	[5]
14. Graphically maximize,	[5]
$Z = 7x_1 + 10x_2$	
Subject to constraints,	
$3x_1 + x_2 \leq 9$	
$ \mathbf{x_1} + 2\mathbf{x_2} \leq 8$	
$\mathbf{x_1} \ge 0, \mathbf{x_2} \ge 0$	F1 (\7
15. Solve the following LPP using simplex method.	[10]
Maximize: $P = 50x_1 + 80x_2$ Subject to: $x_1 + 2x_2 \le 32$ $3x_1 + 4x_2 \le 84$	
$x_1 \ge 0, x_2 \ge 0$	•

Examination Control Division 2073 Shrawan

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	8 0		
Programme	ALL (Except B. Arch)	Pass Marks	32		
	П/І	Time	3 hrs.		

Subject: - Engineering Mathematics II (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

1. Use properties of determinants to prove:
$$\begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} = 4a^2b^2c^2$$
 [5]

- 2. Prove that the necessary and sufficient condition for a square matrix A to posses an inverse is that the matrix A should be non singular. [5]
- 3. Find the rank of the matrix $\begin{pmatrix} 1 & 3 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{pmatrix}$ [5]

by reducing it into normal form.

4. Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ [4+1]

Give an example showing importance of eigenvectors.

- 5. Show that $\vec{F} = (2x + z^2)\vec{i} + Z\vec{j} + (y + 2xz)\vec{K}$ is irrotational and find its scalar potential. [5]
- 6. State and prove Green's Theorem in plane. [5]
- 7. Evaluate $\iint_{s} \overrightarrow{F} \cdot \overrightarrow{n} \, ds$, where $\overrightarrow{F} = yz \overrightarrow{i} + zx \overrightarrow{j} + xy \overrightarrow{k}$ and S is the surface of the sphere $x^{2} + y^{2} + z^{2} = 1$ in the first octant. [5]
- 8. Evaluate $\int_{c} xy dx + xy^{2} dy$ by applying stokes theorem where C is the square in xy-plane with vertices (1,0), (-1,0), (0,1), (0,-1) [5]
- 9. Find the Laplace transform of:
 - i) $te^{2t} \sin 3t$
 - ii) $\frac{e^{-t} \sin t}{t}$

- 10. Find the inverse Laplace transform of:
- [2+3]

[5]

[10]

- i) $\frac{s+2}{s^2-4s+13}$
- ii) $\log\left(\frac{s+a}{s-a}\right)$
- 11. Solve the following initial value problem using Laplace transform:

$$x''+4x'+4x=6e^{-t}$$
, $x(0)=-2$, $x'(0)=-8$

- 12. Find the Fourier series representation of f(x) = |x| in $[-\pi, \pi]$ [5]
- 13. Obtain the half range Fourier Sine Series for the function $f(x) = x^2$ in the interval (0, 3). [5]
- 14. Apply Graphical method to maximize, [5]

$$Z = 5x_1 + 3x_2$$

Subject to the constraints:

$$x_1 + 2x_2 \le 50$$

$$2x_1 + x_2 \le 40$$

$$\mathbf{x}_1 \ge 0, \ \mathbf{x}_2 \ge 0$$

15. Solve the following Linear Programming Problem by Simplex method:

Maximize: $Z = 15x_1 + 10x_2$

Subject to: $x_1 + 3x_2 \le 10$

$$2x_1 + x_2 \le 10$$

$$x_1 \ge 0, x_2 \ge 0$$

**

Examination Control Division

2071 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	II/I	Time	3 hrs.

[5]

[5]

[5]

[5]

[5]

[2.5×2]

Subject:	- Engin	eering	; Ma	athe	matics II	(SI	4501,)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
									411-1

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Using the properties, evaluate the determinant:

 $\begin{vmatrix} 1 & a & a^2 & a^3 + bcd \\ 1 & b & b^2 & b^3 + cda \\ 1 & c & c^2 & c^3 + abd \\ 1 & d & d^2 & d^3 + abc \end{vmatrix}$

- 2. Prove that every square matrix can uniquely be expressed as the sum of a symmetric and a skew symmetric matrix.
- 3. Test the consistency of the system:

x-6y-z=10, 2x-2y+3z=10, 3x-8y+2z=20

And solve completely, if found consistent.

- 4. Find the eigen values and eigenvecters of the matrix $\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$.
- 5. Using the line integral, compute the workdone by the force

 $\vec{F} = (2x - y + 2z)\vec{i} + (x + y - z)\vec{j} + (3x - 2y - 5z)\vec{k}$

when it moves once around a circle $x^2 + y^2 = 4$; z = 0

- 6. State and prove Green's Theorem in plane.
- 7. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2) \vec{i} 2xy \vec{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b.
- 8. Evaluate $\iint_{s} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = (2xy + z)\vec{i} + y^2\vec{j} (x + 3y)\vec{K}$ by Gauss divergence theorem; where S is surface of the plane 2x + 2y + z = 6 in the first octant bounding the volume V. [5]
- 9. Find the Laplace transform of the following:
 - a) te-2t cost
 - b) Sinhat.cost

10. Find the inverse Laplace transform of:

[2.5×2]

- a) $\frac{1}{S(S+1)}$
- b) $\frac{S^2}{(S^2 + b^2)^2}$
- 11. Solve the differential equation $y''+2y'+5y=e^{-t}\sin t$, y(0)=0, y'(0)=1, by using Laplace transform. [5]
- 12. Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$. [5]
- 13. Obtain half range sine series for the function $f(x) = x x^2$ for 0 < x < 1. [5]
- 14. Graphically maximize and minimize [5]

z = 9x + 40y subjected to the constraints

 $y - x \ge 1, y - x \le 3, 2 \le x \le 5$

15. Solve the following Linear Programming Problem by Simplex method: [10]

Maximize, $P = 20x_2 - 5x_1$

Subjected to, $10x_2 - 2x_1 \le 5$

 $2x_1 + 5x_2 \le 10$ and $x_1, x_2 \ge 0$

Examination Control Division 2072 Kartik

Exam.	New Back (2066 & Later Batch)			
Level	BE	Full Marks	80	
Programme	All (Except B.Arch)	Pass Marks	32	
Year / Part	II / I	Time	3 hrs.	

[5]

[5]

[5]

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Prove that
$$\begin{vmatrix} (a+b)^2 & ca & bc \\ ca & (b+c)^2 & ab \\ bc & ab & (c+a)^2 \end{vmatrix} = 2abc(a+b+c)^3$$
 [5]

- 2. If A and B are two non singular matrices, then prove that $(AB)^{-1} = B^{-1}A^{-1}$ [5]
- 3. Find the rank of the matrix: [5]

$$\begin{pmatrix}
1 & -1 & -2 & -4 \\
2 & 3 & -1 & -1 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{pmatrix}$$

4. Find the eigen values and eigen vectors of the matrix.

$$\begin{pmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{pmatrix}$$

- 5. Prove that the line integral $\int_{A}^{B} \overrightarrow{F} . d \overrightarrow{r}$ is independent of path joining any two points A and B in the region R, if and only if, $\int_{C} \overrightarrow{F} . d \overrightarrow{r} = 0$ for any simple closed path C in R. [5]
- 6. Evaluate $\iint_S \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant. [5]

OR

Apply Stoke's theorem to evaluate $\int_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6).

7. State Green's theorem in plane and hence apply it to compute the area of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.

8. Apply Gauss divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = x^2 \vec{i} + z \vec{j} + yz \vec{k}$ taken [5] over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [2.5×2] 9. Find the Laplace transform of the following: $\frac{\cos 2t - \cos 3t}{}$ b) $\sin^3 2t$ [2+3]10. Find the inverse Laplace transform of the following: a) $\frac{1}{s^2 - 5s + 6}$ b) $\frac{s+2}{(s^2+4s+5)^2}$ 11. Solve the initial value problem by using Laplace transform: [5] $x''+2x'+5x = e^{-t} \sin t$; x(0) = 0, x'(0) = 112. Obtain Fourier Series for the function $f(x) = x - x^2$ from $-\pi$ to π and hence show that: [5] $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ 13. Obtain the half range sine series for the function $f(x) = x^2$ in the interval (0,3). [5]. [5] 14. Graphically maximize and minimize $Z = 5x_1 + 3x_2$ Subjected to constraints $3x_1 + 5x_2 \le 15$ $5x_1 + 2x_2 \le 10, x_1, x_2 \ge 0$ [10] 15. Use simplex method to solve the Linear Programming problem: Maximize $Z = 15x_1 + 10x_2$ $2x_1 + 2x_2 \le 10$ Subject to $x_1 + 3x_2 \le 10$

 $x_1, x_2 \ge 0$

and

Examination Control Division 2070 Chaitra

Exam.	Re	gular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

Subject: - Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Using the properties of determinant prove

$$\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2 a b c (a+b+c)^3$$

- 2. Prove that $(AB)^T = B^T A^T$ where A is the matrix of size $m \times p$ and B is the matrix of size $p \times n$ [5]
- 3. Find the rank of the following matrix by reducing normal form. $\begin{bmatrix} 1 & 3 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$ [5]
- 4. Find the eigen values and eigen vectors of the following matrix. $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$ [5]
- 5. Prove that the line intergral $\int_{A}^{B} \overrightarrow{F}.d\overrightarrow{r}$ is independent of the path joining any two points A and B in a region if $\int_{c}^{\overrightarrow{F}} \overrightarrow{F}.d\overrightarrow{r} = 0$ for any simple closed curve C in the region. [5]
- 6. Evaluate $\iint_S \vec{F} \cdot \hat{n}$ ds where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and S is the finite plane x + y + z = 1 between the coordinate planes. [5]

OR

Evaluate $\iint_{s} \overrightarrow{F} \cdot \hat{n} \, ds$ for $\overrightarrow{F} = yz \overrightarrow{i} + zx \overrightarrow{j} + xy \overrightarrow{k}$ where S is the surface of sphere $x^{2} + y^{2} + z^{2} = 1$ in the first octant.

7. Evaluate, $\iint_{S} \overrightarrow{F} \cdot \hat{n} \, ds$ for $\overrightarrow{F} = x \overrightarrow{i} - y \overrightarrow{j} + (z^2 - 1) \overrightarrow{k}$ where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and z = 1 [5]

- 8. Verify the stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper part of the sphere $x^2 + y^2 + z^2 = a^2C$ is its boundary. [5]
- 9. Find the Laplace transform of (a) $t^2 \sin zt$ and (b) $\frac{1-e^t}{t}$ [2.5×2]
- 10. Find the inverse Laplace transform of (a) $\frac{2s+3}{s^2+5s-6}$ (b) $\frac{s^3}{s^4-a^4}$ [2.5×2]
- 11. Solve the following differential equation by using Laplace transform [5] y''+y'-2y=x, y(0)=1, y'(0)=0
- 12. Obtain the Fourior series for $f(x) = x^2$ in the interval $-\pi < x < \pi$ and hence prove that

$$\sum \frac{1}{x^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{6}$$
 [5]

- 13. Obtain half range sine series for $f(x) = \pi x x^2$ in $(0, \pi)$ [5]
- 14. Graphically minimize $z = 4x_1 + 3x_2 + x_3$ [5]

Subject to $x_1 + 2x_2 + 4x_3 \ge 12$

$$3x_1 + 2x_2 + x_3 \ge 8$$
 and $x_1, x_2, x_3 \ge 0$

15. Minimize $z = 8x_1 + 9x_2$ [10]

Subject to $x_1 + 3x_2 \ge 4$

 $2x_1 + x_2 \ge 5$ with $x_1, x_2 \ge 0$

Examination Control Division 2071 Shawan

Exam.	New Back (2066	& Later Bat	ch)
Level	BE	Full Marks	80
	All (Except B.Arch)	Pass Marks	32
Year / Part	II / I	Time	.3 hrs.

Subject: - Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Show that:
$$\begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (c+a)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix} = 2abc(a+b+c)^3$$
 [5]

- 2. Prove that every square matrix can be uniquely written as a sum of Hermitian and Skew-Hermitian matrices. [5]
- 3. Find the rank of the matrix by changing it into normal form: $\begin{pmatrix}
 3 & 1 & 4 \\
 0 & 5 & 8 \\
 -3 & 4 & 4 \\
 1 & 2 & 4
 \end{pmatrix}$ [5]
- 4. Find the eigen value and eigen vector of the matrix: $\begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 3 \\ 2 & 1 & -1 \end{pmatrix}$ [5]
- 5. Using Green's theorem, evaluate $\int_C (y^3 dx x^3 dy)$ where C is the boundary of the circle $x^2 + y^2 = 4$. [5]
- 6. Show that $\vec{F}(x, y, z) = y^3 \vec{i} + (3xy^2 + e^{2z}) \vec{J} + 2ye^{2z} \vec{k}$ is conservative vector field and find its scalar potential function. [5]
- 7. Find the surface integral $\iint_S \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = x \vec{i} + y \vec{j} + z \vec{k}$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$. [5]
- 8. Verify Stoke's theorem for $\vec{F}(x,y,z) = (2x-y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 4$ and C is its boundary. [5]

OR

Evaluate using Gauss divergence theorem,

 $\iint_S \vec{F} \cdot \vec{n} \, ds \text{ where } \vec{F}(x, y, z) = x^2 y \vec{i} + x y^2 \vec{j} + 2x y z \vec{k} \text{ and } S \text{ is the surface bounded by the planes } x = 0, y = 0, z = 0 \text{ and } x + 2y + z = 2$

9. Find the Laplace transform of (i) sin 2t cosh 4t (ii) te^{2t} sin 4t. [5]

- 10. Using the Convolution theorem, find the inverse Laplace transform of 3s/(s²+4)(s²+1)
 11. Solve the following initial value problem using Laplace transform: y''+4y'+3y = e¹, y(0) = 00, y'(0) = 2
 12. Obtain the half range Fourier sine series of f(x) = π -x in the range 0 < x < π.
 [5]
 13. Obtain the Fourier series of f(x) = e³x in 0 < x < 2π.
 [5]
 14. Graphically maximum Z = 5x₁ + 3x₂ subject to constraints x₁ + 2x₂ ≤ 50,2x₁ + x₂ ≤ 40 and x₁ ≥ 0,x₂ ≥ 0
- 15. Solve the following linear programming problem by simplex method constructing the duality:

 Minimize: P = 21x₁+50x₂

 Subject to 3x₂+7x₂ > 17

[10]

Subject to $3x_1+7x_2 \ge 17$ $2x_1+5x_2 \ge 12$ $x_1,x_2 \ge 0$

Examination Control Division

2070 Ashad

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All (Except B. Arch)	Pass Marks	32
Year / Part	II/I	Time	3 hrs.

[5]

Subject: - Engineering Mathematics III (SH501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.

1. Prove that:
$$\begin{vmatrix} a & b & b & b \\ a & b & a & a \\ a & a & b & a \\ b & b & b & a \end{vmatrix} = -(b-a)^4$$
 [5]

- 2. Prove that every matrix A can uniquely be expressed as a sum of a symmetric and a skew symmetric matrix. [5]
- 3. Test the consistency of the system x+y+z=3, x+2y+3z=4 and 2x+3y+4z=7 and solve if consistent. [5]
- 4. Verify Cayley-Hamilton theorem for matrix A and find the inverse of $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ [5]
- 5. State and prove Green's theorem in the plane.

OR

Verify Stroke's theorem for $\overrightarrow{F} = (x^2 + y^2) \overrightarrow{i} - 2xy \overrightarrow{j}$ taken round the rectangle in the xy-plane bounded by x = 0, x = a, y = 0, y = b

- 6. Find the work done in moving particle once round the circle $x^2 + y^2 = 9$, z = 0 under the force field \overrightarrow{F} given by $\overrightarrow{F} = (2x y + z) \overrightarrow{i} + (x + y z^2) \overrightarrow{j} + (3x 2y + 4z) \overrightarrow{k}$ [5]
- 7. Evaluate $\iint_{s} \overrightarrow{F} \cdot \overrightarrow{n} ds$ where $\overrightarrow{F} = xy \overrightarrow{i} x^{2} \overrightarrow{j} + (x+z) \overrightarrow{k}$, s is the portion of the plane 2x+2y+z=6 included in the first octant. [5]
- 8. Show that $\iint_{S} \left[(x^{3} yz) \overrightarrow{i} 2x^{2}y \overrightarrow{j} + 2\overrightarrow{k} \right] \overrightarrow{n} ds = \frac{a^{5}}{3} \text{ where s is the surface of the cube bounded by the planes } x = 0, x = a, y = 0, y = a, z = 0, z = a$ [5]
- 9. Find the Laplace transform of (i) $f(t) = \frac{1 \cos t}{t}$ (ii) $f(t) = te^{-t} \sin t$ [5]

10. Find the inverse Laplace transform of (i)
$$\frac{(s+2)^3}{s^4}$$
 (ii) $\frac{1}{s^2(s^2+a^2)}$ [5]

11. Using Laplace Transform to solve:
$$y''+4y = \sin t$$
; $y(0) = 0 = y'(0)$ [5]

12. Find a fourier series to represent
$$f(x) = x - x^2$$
 from $x = -\Pi$ to $x = \Pi$ [5]

13. Find a fourier series to represent
$$f(x) = 2x - x^2$$
 in the range (0,3) [5]

OR

Express f(x) = x as a half range sine series in $0 < x < \prod$

14. Use simplex method to, Maximize
$$p = 15x_1 + 10x_2$$
 [7] Subject to $2x_1 + x_2 \le 10$ $x_1 + 3x_2 \le 10$, $x_1, x_2 \ge 0$

15. Find the dual of following Linear programming problem and solve by simplex method [8]

Minimize
$$C = 16x_1 + 45x_2$$

Subject to $2x_1 + 5x_2 \ge 50$
 $x_1 + 3x_2 \ge 27$, $x_1, x_2 \ge 0$

OR

Use Big M-method to solve the following linear programming problem.

Maximize
$$p = 2x_1 + x_2$$

Subject to $x_1 + x_2 \le 10$
 $-x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0$

Examination Control Division

2069 Chaitra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	II / I	Time	3 hrs.

Subject: - Engineering Mathematics III (SH501)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Find the value of the determinant
$$\begin{vmatrix} a^2 & a^2 - (b-c)^2 & bc \\ b^2 & b^2 - (c-a)^2 & ca \\ c^2 & c^2 - (a-b)^2 & ab \end{vmatrix}$$

[5]

[5]

- 2. Show that the matrix B^{θ} AB is Hermitian or skew-Hermittian according as A is Hermitian and skew- Hermitian.
- 3. Find the rank of the matrix $\begin{vmatrix} 0 & 1 & 3 & 6 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{vmatrix}$ reducing this into the triangular form. [5]
- 4. Obtain the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and verify that it is

[5] satisfied by A.

- 5. Evaluate $\vec{F} \cdot \vec{dr}$, where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ along the closed curve C bounded by $y^2 = x$ and $x^2 = y$ [5]
- 6. Find the value of the normal surface integral $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, ds$ for $\overrightarrow{F} = x \overrightarrow{i} y \overrightarrow{j} + (z^2 1) \overrightarrow{k}$, where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ between the planes Z = 0 and [5] Z = 1.

7. Using Green's theorem, find the area of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ [5]

8. Verify stoke's theorem for $\overrightarrow{F} = 2y \overrightarrow{i} + 3x \overrightarrow{j} - z^2 \overrightarrow{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ and C is its boundary. [5]

OR

Evaluate the volume intergral $\iiint F dv$, where V is the region bounded by the surface x = 0, y = 0, y = 6, $z = x^2$, z = 4 and $\overrightarrow{F} = 2xz \overrightarrow{i} - x \overrightarrow{j} + y^2 \overrightarrow{k}$

9. Find the Laplace transforms of the following functions

 $[2.5 \times 2]$

- a) $t e^{-4t} \sin 3t$

10. State and prove the second shifting theorem of the Laplace transform. [5] 11. Solve the following differential equation using Laplace transform. [5] $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = x \text{ given } y(0) = 1, \ y'(0) = 0$ 12. Obtain the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$ and hence show that $\sum \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ [5] 13. Express f(x) = x as a half-range sine series in 0 < x < 2[5] 14. Maximize $Z = 4x_1 + 5x_2$ subject to constraints [5] $2x_1 + 5x_2 \le 25$ $6x_1 + 5x_2 \le 45$ $x_1 \ge 0$ and $x_2 \ge 0$ graphically 15. Solve the following linear programming problem using the simplex method. [10] Maximize $P = 50x_1 + 80x_2$ Subject to $x_1 + 2x_2 \le 32$

 $3x_1 + 4x_2 \le 84$ $x_1, x_2 \ge 0$

Examination Control Division

Exam.		Regular .	
Level	BE	Full Marks	80
Programme	BCE, BEL, BEX, BCT, BME, BIE, B. AGRI.	Pass Marks	32
Year / Part	11/1	Time	3 hrs.

[5]

2068 Chaitra

Subject: - Engineering Mathematics III (SH 501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. Prove that:
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2 = \begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ac - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2.$$
 [5]

- 2. Define Hermition and Skew Hermition matrix. Show that every square matrix can be uniquely expressed as the sum of a Hermition and a skew Hermition.
 - 3. For what value of λ the equation x + y + z = 1, $x + 4y + 10z = \lambda^2$ and $x + 2y + 4z = \lambda$ have a solution? Solve them completely in each case. [5]
 - 4. Find the eigen values and eigen vectors of $A = \begin{vmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{vmatrix}$. [5]
 - 5. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, Where C: $x^2 = y$ and $y^2 = x$ and $\vec{F} = (x-y)\vec{i} + (x+y)\vec{j}$. [5]
 - 6. State and prove Green theorem in a plane. [5]
 - 7. Verify Guess divergence theorem for $\vec{F} = x^2 \vec{i} + 3 \vec{j} + yz \vec{k}$. Taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
 - 3. Find the Laplace transform of the given function (i) t²sint (ii) cosat sinhat. [5]
 - 9. Evaluate $\iint_s \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 3\vec{i} + x\vec{j} yz\vec{k}$ and s is the surface of the cylinder $x^2 + y^2 = 9$ included in the first octant between the plane z = 0, z = 4. [5]
 - 10. Find the inverse Laplace transform: (a) $\frac{1}{(S-2)(S+4)}$ (b) $\log\left(\frac{s^2+a^2}{s^2}\right)$ [5]
 - 11. Solve the equation using Laplace transform y'' + 4y' + 3y = t, t>0 y(0) = 0, y'(0) = 1. [5]

Obtain a Fourier series to represent the function f(x) = /x/ for $-\pi \le x \le \pi$ and hence deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ [5] 13. Obtain the half Range Sine Series $f(x) = e^x$ in 0 < x < 1. [5] Obtain the Fourier series for $f(x) = x - x^2$ where -1 < x < 1 as a Fourier series of period 2. 14. Solve the following by using the simplex method: [7.5]Maximize $P = 15x_1 + 10 x_2$, Subject to $2x_1 + x_2 \le 10$, $x_1 + 3x_2 \le 10$, $x_1, x_2 \ge 0.$ [7.5]15 Solve by using the dual method: Minimize $C = 21x_1 + 50x_2$, Subject to $2x_1 + 5x_2 \ge 12$, $3x_1 + 7x_2 \ge 17$, $x_1, x_2 \ge 0.$ OR Solve the following LPP by using the big M-method: Maximize $P = 2x_1 + x_2$, Subject to $x_1 + x_2 \le 10$, $-x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0.$

COMPUTER II / I

05		TRI		ÜNI	ER!	SITY	
77	L T (7 7 7	ייד דרי	~~ ~	 101	~ TT		

INSTITUTE OF ENGINEERING

Examination Control Division

2067 Ashadh

	La Direction of the Commission			1.00		
_	Exam.	Regular/Back				
	Level	BE	Full Marks	80		
-	Programme	All (Except B.Arch.)	Pass Marks	32		
	Year / Part	II/I	Time	3 hrs.		

Subject: - Mathematics III

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. Using the properties of determinant prove:

$$\begin{vmatrix} a^{2} + 1 & ba & ca & da \\ ab & b^{2} + 1 & cb & db \\ ac & bc & c^{2} + 1 & dc \\ ad & bd & cd & d^{2} + 1 \end{vmatrix} = a^{2} + b^{2} + c^{2} + d^{2} + 1$$

- 2. Show that every square matrix can be uniquely expressed as the sum of hermitian and a skew-hermitian matrix.
 - 3/ Reduce to normal form and find the rank of the matrix:

$$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$

4. Find the eigen values and eigne vectors of the matrix

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

- 5, Find the Laplace transform-of:
 - هر) coshat sin at

$$\frac{1}{b}$$
 $\frac{\cos 2t - \cos 3t}{t}$

6. Find the inverse Laplace transform of:

a)
$$\frac{1}{s^2(s^2+a^2)}$$

$$b) \log \frac{s+1}{s-1}$$

- State and prove the integral theorem of the Laplace transform.
- 8 Solve the following differential equation using the Laplace transform.

$$y''' + 2y'' - y' - 2y = 0$$
 where $y(0) = y'(0) = 0$ and $y''(0) = 6$

9. Find a Fourier series to represent $x - x^2$ from $x = -\pi$ to π . Hence show that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

- 10. Express f(x) = x as a cosine half range series in 0 < x < 2.
- 11 The acceleration of a moving particle at any time t is given by $\frac{1}{d^2 + d^2 + d^2$ $\frac{d^2 r}{dt^2} = 12 \cos 2t\hat{i} - 8 \sin 2t\hat{j} + 16t\hat{k}$. Find the velocity \vec{v} and displacement \vec{r} at anytime t

$$t = 0$$
, $\overrightarrow{v} = 0$ and $\overrightarrow{r} = 0$.

- 12. Find the angle between the normals to the surface $xy = z^2$ at the points (1,4,2) and (-3, -3, 3)
- 13. Find the work done in moving a particle once round the circle $x^2 + y^2 = 9$, z = 0 under the force field \overrightarrow{F} given by $\overrightarrow{F} = (2x - y + z) \overrightarrow{i} + (x + y - z^2) \overrightarrow{j} + (3x - 2y + 4z) \overrightarrow{k}$
- 14. Evaluate $\iint \vec{F} \cdot \vec{n} \, ds$ where s is the upper side of triangle with vertices (1,0,0), (0,1,0),

(0,0,1) where
$$\overrightarrow{F} = (x-2z)\overrightarrow{i} + (x+3y+z)\overrightarrow{j} + (5x+y)\overrightarrow{k}$$
.

- 15. State Green's theorem in a plane. Using Green's theorem find the area of $x^{2/3} + y^{2/3} = a^{2/3}$.
- 16. Verify Stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where s is the upper part of the sphere $x^2 + y^2 + z^2 = a^2$ and c is its boundary.

Verify Gauss theorem for $\overrightarrow{F} = y \overrightarrow{i} + x \overrightarrow{j} + z^2 \overrightarrow{k}$ over the region bounded by $x^2 + y^2 = a^2$, z = 0 and z = h.

٠,				
	Exam.	Reg	ular / Back	
	Level	BE	Full Marks	80
•	Programme	All (Except B.Arch.)	Pass Marks	32
•	Year / Part'	II/I 'r	Time	3 hrs.

Subject: - Mathematics III

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- (1) Find the value of the determinant without expansion

- Show that the necessary and sufficient condition for a square matrix A to posses inverse is that A is non-singular.
- 3 Reduce to normal form and hence find the rank of the matrix.

- \oint . Verify Cayley-Hamilton theorem for a matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
- 5. Find the Laplace transforms of (i) t e-4t sin 3t (ii) coshat sinat
- 6. Find the inverse Laplace transform of (i) $\log \frac{s+1}{s-1}$ (ii) $\frac{s^2}{(s-3)(s^2+4)}$
- (7) If $\mathcal{L}\{f(t)\} = F(s)$, the prove that $\mathcal{L}\left\{\int_{0}^{t} f(u)du\right\} = \frac{1}{s}F(s)$, s > 0.
 - 8. Using Laplace transform solve the equation

$$(D^2 + .5D + 6)x = .5e^t$$

given $x(0) = 2$, $x'(0) = 1$

9. If $f(x) = x^2$ and $f(x + 2\pi) = f(x)$ in $[-\pi, \pi]$, find the Fourier series expansion of x^2 in the interval $-\pi \le x \le \pi$. Also deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.

- 10. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 11. Find the work done in moving a particle once round the circle $x^2 + y^2 = 9$, z = 0 under the force field \vec{F} given by $\vec{F} = (2x y + z) \vec{i} + (x + y z^2) \vec{j} + (3x 2y + 4z) \vec{k}$.
- 12. Prove that the line integral $\int_{A}^{B} \overrightarrow{F} \cdot d \cdot \overrightarrow{r}$ is independent of the path joining any two points A and B in a region R if and only if $\int_{C}^{F} \overrightarrow{F} \cdot d \cdot \overrightarrow{r} = 0$ for any simple closed curve C in R.
- 13. Evaluate $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, ds$ where $\overrightarrow{F} = xy \overrightarrow{i} x^2 \cdot \overrightarrow{j} + (x + z) \overrightarrow{k}$ and s in the portion of the plane 2x + 2y + z = 6 included in the first octant.

OR

*State and prove Green's theorem in the plane.

14. Verify Stoke's theorem for $\overrightarrow{F} = 2y \overrightarrow{i} + 3x \overrightarrow{j} - z^2 \overrightarrow{k}$ where s is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ and C its boundary.

OR

Verify gauss theorem for $\overrightarrow{F} = y \overrightarrow{i} + x \overrightarrow{j} + z^2 \overrightarrow{k}$ over the region bounded by $x^2 + y^2 = a^2$, z = 0 and z = h.

- 15. Obtain the half-range sine series for e^x in 0 < x < 1.
- 16. Find the Fourier series of the function: $f(x) = x^3 (-\pi < x < \pi)$.