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'/ Attempt All questions-
,/ The figures in the margin indicate Full Marks
,/ Assume suitable datq if necessary'

1. Define harmonic func.tion of complex variable. Show that u(x,y) - y' -3*'y is harmonic

and find corresponding analytic function. [1+4]

,- Define conformal mapping for function of complex variable. Show that function of

complex variable w : izis transformed through an angle * in w-plane. [1+4]
2

3. State and prove Cauchy's integral theorem. t5]

4. Define Laurent's Series forthe function of complex variable. Find Laurent's series of the

5. Define pole of order m for function of complex variable. Find residues of

' '2 -22 -t ,t--nres [l+4]f (z) = 
-# 

^ at its poles.-\ / (z+l)'(z'+7)

function f (z) -ffi in the region z <lzl<3'

6. Evaluate 1'' -jl3xby contour integration in the complex plane.- J_*(*r +lX*t +4)"'

7. Find the Z-ttansform of:

i) t2e"
' ii) e-utcoswt

8. Find the inverse Z-transform ofi

i) X(z) - , 
2lrr5' 

^, (By partial fraction method) '/ \ ' (z-2)(z-3)

ii) x(z) = #+r (By inversion integral method)
u-z 'r

[1+4]

tsl

[3+21

12.s+2.51

lr +41

t5l

g. State hnal value theorem for Z-transform. obtain Z-transform of (1-.-" )t uto and hence

evaluate x(o) by using final value theorem'

10. Solve the difference equation:

x(k+2)-3x(k+1)+2x(k)=Q; given that x(0)=g and x(1)=1 by using z-transform

method.

11. Find the Fourier integral of the function:

It for 0<x<rcr(*)=lii for x>7rL-,

t5l



b
12. Find the Fourier transform of e-*' . Also verify the convolution theorem for f(x) = e-*'

and g(x) = e-*' tsl

. 13. Derive one dimensional wave equation and solve it completely. [10]

14. Solve complerely the Laplace equation #.# =0 under the conditions: tlOl

/nzcx)
u(0,y) = u(l,y) = u(x,o) = 0,u(x,@) = ti"[?J

: *:t
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Candidates are rcquired to give their answers in their own words as far as practicable.
Attempt AII questions.
The /igures in the margin indicate FulI Marlcs.
Assume suitable data if necessary.

Define harmonic function. Is V : arg(z) is harrnonic? If yes, find a corresponding
harmonic conjugate. lt+l+31
Define conformal mapping. Find the bilinear transformation which maps the points
z: O,l, o into the points w: -3, -1, I respectively. [+4]
Distinguish between Cauchy integral Theorem and Cauchy integral fonnula. Using

l. a)

b)

2- a)

Cauchy integral formula evaluate 
r e'I"ffidz where c is the circle lz-tl=l '

b) State ard Prove Taylor's series for function of complex variable.

t1+41

15I

4- a)

b)

3. a) Dbfine m isolated pole. Using Cauchy's residue theorem evaluate l.;-' I

"(z+tEry
where C is the circle lz-il=2.
Evahmte th integral by contour integration:

r'@ x2I -.-- .J-

'*(t+x2lxz *4f-
Obtain the z-transform of (l-"-*), a > 0 and hence evaluate x(o) by using final value
theorem.

Obtain the inve,rse z-tnansform of:
[2+3I

x(z)= - 
223 +z I

ffi 
by using partial fractionmethod- I5l

5. a) Define z-tansform of function (0. Find the z-fiansform of following sequences: ll+Z+21

b) Solve the difference equation by the application of z-transfonn:

tsl

t5lb)

o) r(r)=f " ''''lt',t''u)

,'o'qr={ll ; I::

t5I
x(t + Z)+ 3x(t< + 1)+ Zx(t) = 0 with conditions x(0) = 0, x(t) =1.



L

7.

a) Atightly stretched stringwith fixedends atx:0 andx:l is initialtyatrestinits
equilibrium position. Find the deflection u(x, 0 if it is set vibrating by giving to each
of is points a velocity 3(/x-x2). tl0l

b) Derive two dime,nsional heat equation t10l

a) Obtain the Fourier sine integral representation of e-tosx and hence show that

o c,t3 sinrrrx b:1"-* gosx, x > o. I5lfp.o:t"-*@sx' x>0.

b) Find the Fourier Cosine transform of f(x) = e1x > 0 and hence by Parseval's ide,ntity,
slrow that t5l

r.€1fi
l- z---rix
'(i+x2f 4
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'/ The figures in the margin indicate Full Markf
,/ Assume suitable data if necessary.

l. a) Define an analyic function for a function of complex variable. Derive Cauchy

Riemann equations in Cartesian form. [1+4]

b) Define linear fractional mapping. Find bilinear mapping which maps the points z : 0,

1, -l to w: i, 2,4. [l+4]

2, a) State and Prove Cauchy integlal theorem. tsl
b) point out difference between Taylor's series and Laurent's series. Find Laurent' series

oftunction f(z)=tt?' , o(lzl <rn
zo

3. a) Define pole of order m. Using Cauchy's residue

t cotz dz; where C is lzl = t -

I

b) Using Counter integration evaluate,

p -dx
J__ (1 * *r), 

.

4, a) Find the z-transform of:

ll+41

theorem evaluate

[1+4]

tsl

(i) cosat

b) Statefinal value theorem. If x(t):0 fort<0 andZlx(t)l:X(z) fort> 0thenprovethat:
l- n-l I

zfx(t+ nr)l = znl ttrl - I*(tr!o | 
. 

.Lk=oJ
5. a) obtain inverse Z-transform of '9* 

=9'* 
1l .rv^r^r v4 

Q-i'(r-z)'

b) Solve the difference equation by the application of z-transform:

x (k+2) -4x (k+l) + 4x(k) = 0; with conditions x(0): 1; x(l):0.
6, a) Derive one dimensional wave equation and solve it completely.

b) A uniform rod of length / has its end maintained at a temperature 0"C and the initial
temperature of the rod is:

u(x,0) = g sin$ for 0<x</ 't

(ii) te-ut [2+3]

[1+4]

tsl

t5l

[5+s]

ll0l

t5l

functions

Find the temperature u(x, t).

7 , a) Find Fourier integral of the function

fl if l*l .tr(x) _ i[o if l"l 't
b) Verify the convolution theorem for Fourier transform for the
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1. a) Define harmonic function of complex variable. Determine the anaiytical tirnction

f(z)=u+iv if u = y'-3xty [t+4]

b) Derive Cauchy-Reimann equations if function of complex variable f(z)=u+ivis
analytic. in cartesian fonn. t5]

- 2. a) What do you mean by conformal mapping? Find the linear transformation which
maps points zr =I,2, =i,2, = -l into the points wr = 0,w, = 1,w: = oo. [1+4]

b) State and prove Cauchy's integral tbrmula. t5]

3. a) State Taylor's theorem. Find the Laurent's series representation of the function

f(z)_+intheannularregionbetween|,l_tand,|z|_z.[l+4]
(z+r)(z+2)

b) Define zero of order rn of function of cornplex variable .Determine the poles and

[1+4]

,/

residue at poles of the functionsf(z) = , :!:\"' 
@+2)(l-z)''

OR

Evaluate the real integral [' ,. 
*tu.. 

dx by contour integration in the complex plane. t5]i_- (l + x. ),

4. a) Define z-transform. How does it differ from Fourier transform? Obtain z-transform of

(i) tza' (ii) cosat [1+1+1.5+1.5]

b) State initial value theorem for z transform. Find the initial value x(0) and x(l) for the
function. ' [1+4]

X(z) =
(l - er;z-'

(l - r-t )(1 - e-rz-';

5. a) Obtain the inverse z-transform of X(z) : , t1-i" 
:.by using inversion integral(z-3)'(z-2)

method. t5l

b) Apply method of z-transform to solve the difference equation t5]

x(k + 2)L 4x(k+ 1) + ax(k) = 0; x(0) - 0, x(1) = I



"r

6. Solve completely onedimensional wave equation # = C 
#under 

the conditions:

u(0,1)=0,u(7,1)=Qu(x,0)=0 and f+l -3(/x-x')\ ft /",,=o

7. Derive one dimensional heat equation and solve it completely.

8. a) State convolution theorem for Fourier transform. Give its importance with

[10]

ll0l
suitable

[2+3]example.

b) Find the Fourier cosine integral of the function

show 
"" fguff# = #.-n. ;x > o,k > o

f(x) - e-o(x > 0,k > 0) and hence

**+
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{ Candidates are required to give their answers in their own words as far as practicable.
r' Auempt All questions.
r' The/igures in the margin indicate Full Marks.
r' Assume suitable data dnecessary.

l. a) If u=(x-l)'-Jxy'+3y2,determineVsothatu* iv isananalytic functionofx+iy.

b) Define an analyic function. Express Cauchy Riemann equations u* = v, and

uy = -v* in Polar from'

2. a) Find the bilinear transformation which maps points zr=l,zz=i,zt=-L into the

points wr = i, w2 = -1, Wr = -i respectively.

rl+i
b) Evaluat" f,*'{*' +iy)dz along the path y = x2

3.a)Expressf(z)=#asLaurent,sseriesintheregionl<lzl.z.

b) Evalute f '*** d0 by contour integration method in complex plane.

4. a) Find z-transform of:

i) te-"|
ii) sinat

b) State and prove final value theorem for z- transform.

5. a) Find the inverse z-transfom of -2*-^.r:.5'=. by using partial fraction method.
(z-2)(z-3)

b) Solve difference equation *(I*2)-3x(k +l)+2x(k) = 4* for x(0) = 0 and x(l) : 1.

6. Derive one dimensional wave equation and obtain its solution.

7. Solve one dimensional heat'equation:

Ozu

*
ar
At

c' under the conditions:

i)u is not infinite as t -> oo

artt) A=0 forx=0andx:/

iii) u(x,O)=/x-x' fort= 0; between x =0 and x : /
8. a) Find Fourier integral representation of f(x) = e-*, X > 0 and hence evaluate

;. 
co_s(sx) 

OsJo s'+l

b) Find the Fourier cosine transforrn of f(x) - r-!*iand hence, by, Parseval's identity,

tsI

tsl

t5I

tsI

tsI

tsI

t5I

tsl

tsl

tsI

tt0l
[10]

tsl

9"

shown that f -l-^=dx = 1Jo (l+x,)" 4
***

tsI
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l. Determine the analytic function f(z): u + iv if u = log

2. State and prove Cauchy's integral formula.

3. Find the Taylor's series of f(z) = + about z= 3i.l-z

4.
z2dz'

*'+y'.

Evaluate the intesral:
.{"'

where C: lzl= 4, using residue theorem.
(z+l)(z+3)c

5. Define conformal mapping, showthat w =**\ is invariant to
ez+o

[ffi){m) =(ft)"(*)
6. Using contour integration, evaluate real integral:

.fco

I
-qo

x2dx

oE;Fx
7. Find the z-transform of x(z) = cosh t sinh t.

8. State and prove "final value theoremo' for the z-transform.

g. Find the inverse z-transform of x(z) = Z;h.
10. Using z-transform solve the dif;ference equation:

x(K + 2) + 6x(K + l) + 9x(K):2r' Xs: xy = 0.

11. Derive one-dirnensional heat equation.

12. Solve the wave equation for a tightly stretched string of length 'l' fixed at both ends if the
initial deflection in y(x, 0) : lx - x' and the initial velocity is zero.

13. Solve *.*= 0 under the conditions u(0, y) = u(1, y) = u(x, 0) = 0, u(x, a) = ,irf+')-oxz 2y' \l)
14. Derive the wave equation (vibrating of a sping).

15. Find the Fourier cosine transform of f(x) = s-lmlx and hence show rn" igqdy = as-nn.
i T'+F' ' 2P

16. Find the Fourier integral representation"of the function (x) : e-*, x > 0 with f(-x): (x).

Hence evaluate 
i ffiar.

*+*



tl rn
: t2 TRIBHUvAN LTNIVERSITY. INSTITUTE OF ENGINEERING

, Examination Control Division
2071 Magh

Exam. Ncrr llacl< (21166.t [,atct' llltch)
Level BE Full Marks 80

Programme
BEL, BEX,
BCT. BGE .f49q Malks - 32

Year / Part IJlfi Time 3 hrs.
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; l. a) Determinethe analytic function f(z):u* ivif u= l*y -f .

b). Find the linear transformation which maps the points z: 0, 1, o into the points

2. a) State and prove Cauchy's integral formula. '"' ' ' -[S]

tsl

t5I

tsl

tsl

\ { lr- 
"-:1r.,.1. j irr,, : :tij-:r-tt,

b) Evaluate
b2?

. .,1 ,,r; r. rr..r, |j,.,, . ,. .. iji;: ,i,tf,:;. l"dz 
where C is the circle lzl= 3. ' "

c (z-t)(z-2)
a

complex function3. a) Find the first four terms of the Taylor's series expansion of the

f h\= z+l 
about the centre z=2.

(z-3)(z-4)

b) Evaluat " L ai?.' 
=.dz 

where C is the circle lrl=1.' Lz(z-t)(z-2) " 2

OR

Evaluate f;'#,, d0 by contour integration in the complex plane.

4. Derive one dimensional heat equation ut = c2ur* and solve it completely.

5. Find all possible solution of Laplace equation uxx * uyy : 0. Using this, hence solve
uxx*uyy=0,undertheconditionsu(0,y):0,u(x,y):0wheny-+@andu(x,0):sinx.

6. a) . Find the z-transform of sin K0. Use it to find the z[aK sin K0].

b) If z[x(K)] -222-+3?!12, findthevalue ofx(Z'1andx(3).
l, 

-ll'\Z L)

7. a) Find the inverse z-transform of x(z) = , 31t {,2' I '
(z-3)'tr-z) by using inversion integral

method. '

b) Using z-transform solve the difference equation x(K + 2) - 4x(K + l) + 4x(K) : 2r
given that x(0) = 0, x(l) : 1.

8. a) Find the Fourier sine integral of the function f(x)'= ek and hence show that
@^

;rt'!ma'I dl.=1 e-K*. x > o. K> otoxl *P' 2

b) Find the Fourier sine transform of e-*, x 2 0 and hence show that

?xsinmx - fil----ox=1e-', m>0
t *'*l 2

*d.*

t5l

t10l

ll0l
t5I

t5I

tsl

tsl
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1. Show ttrat u(x, y) : x2 + 2x! - y2 is a harmonic function and determine v(x, y) in such a
way that f(z)= u(x, y) + iv(x, y) is analytic. t5I

2. Define complex integral. State and prove Cauchy integral formula. t5I

OR

Obtain bilinear transformation which maps -i, o, i to -1, i, 1. t5l

3. Evaluate l^, * =dz 
where C is lzl= 3 using Cauchy's integral formula. t5Itc (s_t)(z_Z)

4. ObtaintheLaurentserieswhichrepresentsthefunction f(z) = . *=rr' 
^- 2<lzl<3. t5I(z+2)(z+3)

I

G5. Find the Laurent series of f(z) = about the point z: i.

tsl

t10l

t5I

tl0l
t5l

t5l

6. State and prove Taylor series of a function f(z).

7. Derive one dimensional wave equation u6 = c2up1 and solve it completely.

8. Solve one dimensional heat equatior, + ="'?'\ under the boundary condition $= O

&Axz'Ax
when x = 0 and x : L and initial condition u(x, 0) : x for 0 < x < L.

9. Fndztransform of (a) te-d and (b) sin at.

10. Find the inverse z-transform b\ z-4 ; (b) , z
'' (z-l)(z-2)' -' 

zz -32+2

I l. Obtain the Z transform of x(t) = (1 - "-"t), u > 0 and hence evaluate x(m) by using final
value theorem. t5I

12. Solve using z-transform the difference equation x(K + 2) + 2x(K + 1) + 3x(K) : 0. t5I

13. Find the Fourier sine transform of (x): e-*, x 2 0 and hence evaluate I, ,ffi*.
14. State and prove convolution theorem of Fourier transform.

tsI

tsl
***
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1. Define analytic function. Show that the function f(z) = \ "analytic 
except z: 0

2. Define complex integral. Evaluate J tog, dz;c:1,l=t
OR

Obtain a bilinear transformation which maps -i, 0, i to -1, i, L
d+i

3. Evaluate f-' ,*' +iy)dz along the path y: x.

4. Find the Taylor series of f(z) : * about the point z: i.
4+z

5. Evaluate the integrals by residue theorem !,ffu,

6. State Cauchy's Residue theorem and use it to evaluate

lrl:z
OR

| " =dz where c isJ. 3 + 4z+zz

Evaluate [^'" Ol 
= 

by contour integration in complex planeJo cos0+2 "

7. Derive the one dimensional wave equation.

tsl

t5l

tsI

tsI

tsl

tsl

tl0I

tl0I
tsI

tsI

tsl

t5I

8. A rod of length L has its ends A and B maintained at 0" and l00"respectively until steady
state prevails. If the changes are made by reducing the temperature of end B to 85o and
increasing that of end A to 15o, then find the temperature distribution in the rod at a
time t.

9. Find the z-transform of (i) e-ut sinwt (ii) cos at

l0.obtaininverseZ-transform ,t<il Offi, fiil ffi
11.Ifx(k):0 fork< 0 andZ{x(k)}:X(z) fork> 0thenprove thatZ {x(k+n)} :z"X(z)-*

n-l

Ir(k)z-k where o:0, 1,2....
k=s-

12. Solve the difference equation x (k+2) - 4x(k+t1 + 4x(k) = 0 with conditions,
x(0) = 0,x(l): I

13. Find the cosine transform of (x): s-,nX m > 0 show that 
r cos'r n -PB
Jo #=zB"

t5I

1- x2
14. Find the Fourier transform of g(x) = if-1 <x<1;

0,

if otherwise.

and hence use it to evaluate f (*":r*)cos(xi 2)dx

***

t5l
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1. Determine the analytic function (z) = u(x,y) + iv(x,y) if u(x ,y)=-x24.

2. Define complex integal. Evaluate: {@+t)dz where C is the squaxe with vertices at z=,. ) Jr.
c

a,z: l,z: l+i and z = i.

oR'6

Fjnd linearfractional transformation mapping of: -2 r+ o,0 F+ !,r-1.J2'4

$t a) State Cauchy's integral formula and evaluate the integral

a
iscircle 14=;.

4-32
-t)(z-2)

where C

b) Obtain the Laur-ent series which represents the function f(z) = when
(l+22)(z+2)

Fl4.z.

4. a) Findthe Taylor's series expansion of(z) = + aboutthepoint z = i.
z'+4

b) Erraluate lgnzaz where C is a circle IA=ZAV Cauchy's residue theorem.

Evaluate f" =*,t"= 
d0 by contour integration in the complex plane.Jo 5-4cos0

$ Find the z-tansforms of, (i) cos h (at) sin (bt) (ii) n.(n-l); n: k

9 Findthe inverse r-tansforms of: (i) Z#, (liD @.fu
7. a) State and prove convolution theorem for z-transform.

b) Solve by using z-transform the difference equation x(k+2) + 2x(k+l) + 3xft) = I '

given that x(0) = 0 and x(l) = 2

OR

+



8. Solve
02u

* = Snirro that u = 0 as t-+o ur*rff as u= 0 at x = 0 and x = I.at-

9. 5op" 9'l**=Qwhich satisfies the condition u(0,y) = u(L,y): u(x,0) = 0 andAx' Ay'

*.,n=r[*).
OR

The diameter of a semi-circular plate of radius a is kept at OoC and the temperature at the
se,mi-circular boundary is u6. Find the steady state temperature in the plate.

10. Find the Fourier integral representation of the function f(x) = {, x } o with (-x) = (x).

Henceevaluate jH-
.0

11. Find the For:rier transform of:
(x) = 1-x2, lxl<I

xcosx-sulx
x3

.orId*.
2

0

t!tt

*
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-

La)

b)

.? ?)

b)

3. a)

b)

State necessary conditions for a function (z) to be analytic. Show that the ftnction
(z) : log z is analytic everywhere except at the origin.

Find the linear fractioiral kansformation that maps the points zt = -i, zz= 0 and z3 : i
into points wr = -1, w2: i, w: : I respectively

State and prove Cauchls integral formula. \.
Write the.statement of Cauchy's integral formula. Use it to evaluate the integral

#-*=;d z whereC is the circtelzl:?.
! (z-.t)(z-3)

Write the statement of Taylor's theorem. Find the Lar:rent series for the function
1

Kr): ,, _zr*z in the region I <lzl<2.

State Cauchy-residue theorem. Using it evaluate ,fry dz where C: lzl : 1.
Joo
co

-oR

evauate '[-9--4i by contour integration in the complex plane.
j 2+cos0 -- q--

4. a) Show that the Z-transform of cos k0 is

Z-transform of ak cos k0.

z(z-cos Use this result to find
z2 -2zcos9+l

^ Zzt +zts obtain the inverse Z-transforrn * 
AffiA,using 

partial fraction method.'

5. a) Solvethe difference equationx(k+ 2) -x(k+ l)+ 0.25xft) =u(k)where x(0): I
and x(1) = 2 andu(k) is unit step function.

bI S?t" and prove shifting theorern of z-transform

6.- Derive one-dimensional wavEequation goveming tansverse vibration of string and solve
- it ro-pletely.

-



I

I

I

't
I

i

1

:

I

7 Solve the one dineensional heat eouation 
L 

= "'At

a) u is not infinite as t -+6

b) 4=oforx=oandx=/and'Ax

6ru
}xz

i; u1x,O1 - lx -x2 fort : 0betweenx :0 and x : I
OR

The diameter of a semi circular plate of radius a is kept at OoC and temperature at the
semi circular boundary is ToC. Show that the steady temperature in the plate is given

byu(r, o) # t * (;)"' sin(2n-l)g

under the conditions:

.9. a) Find tttg Fourier cosine integral representation of the function
(x) = e -* (*, 0, k > 0) and hence show that

l#F.o=*"-* (x>o'K>o)
@

b) obtain Fourier sine transform of e-*, (x > 0) and hence evaluate 
i r ---*

***

1
I

i

I
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'/ Candidates are required to give their answers in their own words as far as practicable.
r' Axempt any Six questions.
/ All questions carry equal marks.
/ Ai.ssume suitable data if necessary.

1. a) State Cauchy - Riemann equations in polar form. Show that f(z): sinz is analytic in
. the entire z-plane.

b) State and prove Cauchy's integral formula.

2. a) State Laurent series. Find Taylor series of f(z) = cosz aboat z: I .
4

Z?e"

G:e
b) Define pole of order m. Find the residue of (z) = at its pole.

-

3. a) Determine the Z-hansform of

. i) t2e-at

ii) e-'t coswt

b) State initial value theorem for Z-transfo rm. lf Z-tansform of a firnction is given by

x(z): #i:i-, determine x(0), x(1) antt x(2).

4. a) Find inverse Z- kansform of

i) i1z1: #, (by partial fraction method)

ii) x(z) : , '!2 - ^ (by inversion integral method)
z'+72+10

b) Solve the difference equation: x(k+2) -4xft+l) +4x(k) : 0 Where x(o) : 1 and
x(1) - g'

5. Derive one dimensional wave equation and obtain its solution.

6. Solve: *. *=0 subject to the conditions, u(o,y) = u(/,y): u(x,o) = 0, and
ax" N"

. (rnr)
u(x,a)=sml 

-1.\t):
7. Define convolution for Fourier,.transform. Verify convolution theor-em for

f(x) = g(x) : 
"-*' 

.

8. Maximize: z = xy * 3x2 subject to

x1 +:,2x2 S 10, x1 < 5, and xz.S 4;.x1, x2 ) 0

by using slrnplex triethod.

rF*t

-
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