Regular 12 title total TRIBHUVAN UNIVERSITY Exam. 27 **Full Marks** 80 BE Level INSTITUTE OF ENGINEERING Pass Marks 32 **Examination Control Division** Programme BCT/ BEX 3 hrs. II / II Time Year / Part 2075 Bhadra

Subject: - Discrete Structure (CT551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define the **terms** Tautology, Contradiction and Logical Equivalences. Show that $\neg A \rightarrow \neg B$ and $B \rightarrow A$ are Logically Equivalent. State the converse, contrapositive and inverse of the statement, "A positive integer is prime only if it has no divisors other than 1 and itself". [3+2+3]
- Show that the premises "There is someone in this class who has been to Pokhara. Everyone who goes to Pokhara visit the Sarankot. Therefore, someone in this class has visited the Sarankot." [8]
- 3. Use mathematical induction to verify:

$$1^{2}-2^{2}+3^{2}-4^{2}+...+(-1)^{(n+1)}n^{2}=(-1)^{n+1}n(n+1)/2$$

- 4. a) State the closure properties of Regular Language.
 - b) Let L be the set of strings accepted by the FSA shown below. Now construct a FSA that accepts the strings $L^{R} = \{X_{n}, \dots, X_{1} | X_{1}, \dots, X_{n} \in L\}$

- 5. i) Find the language L(G) overs, {a,b,c} generated by the grammer, G with production:
 S→aSb, aS→Aa, Aab→c. [4+4]
 - ii) Write a grammer that generates the string over {a,b} not ending with ab.
- 6. Find the solution of recurrence relation of a_n = 5a_{n-1} 6a_{n-2} + 3n + 2ⁿ with initial condition a₀ = 0, a₁ = 1, and a₂ = 2.
- Prove the theorem, "An undirected graph has an even number of vertices of odd degree." Describe complete graph and bipartite graph. [3+5]
- 8. What is chromatic number of $K_5, K_{m,n}$ and C_p for $P \ge 3$, explain with suitable figure. How Euler graph is different from Hamilton graph, explain? [5+3]

[8]

[3]

[5]

9. Use Dijkstra's algorithm to find the length of a shortest path from the vertices A to other in the graph below.

- 10. Write short notes on:
 - i) Max Flow and Min cut Theroem
 - ii) Plannar Graph

.

[4+4]

47 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING **Examination Control Division** 2074 Bhadra

Exam.	Regular				
Level	BE	Full Marks	80		
Programme	BEX, BCT	Pass Marks	32		
Year / Part	11 / 11	Time	3 hrs		

Subject: - Discrete Structure (CT551)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

1. Use rules of inference to show that the hypothesis "If my cheque book is in office, then I have paid my telephone bill", "I was looking for phone bill at breakfast of I was looking for phone bill in my office", "If I was looking for phone bill at breakfast then my cheque book is on breakfast table", "If I was looking for phone bill in my office then my cheque book is in my office", "I have not paid my phone bill" imply the conclusion "My cheque book is on my breakfast table."

2. Write the inverse, converse and contrapositive of the statement "I visit temple only if it's Saturday". Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even. [3+5]

3. Define tableau method with its significances? Use mathematical induction to prove the formula for the sum of a finite number of terms of Geometric Progression: [4+4]

 $\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{k} = \frac{ar^{n+1} - a}{r-1},$ when $r \neq 1$, where n is non-negative integer.

4. Given a language, $L = \{w \in \{a, b\}^* : w \text{ contain at-least three 'b' s}\}$

Write the regular expression for L and design a Finite State Automata that accepts the Language L. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram. [2+6]

- 5. Consider the regular grammar $G=\{N, T, P, \sigma\}$ where N = set of non-terminal symbols = $\{\sigma, C\}, T = \text{set of terminal symbols} = \{a, b\}, P \text{ is the set of production rules} = \{\sigma \rightarrow b\sigma, \sigma, \sigma, \sigma\}$ $\sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b$ and σ being the starting symbol. Construct a non-deterministic finite state automaton equivalent to the given regular grammar. Use this non-deterministic finite state automaton to generate equivalent deterministic finite state automaton. [3+5]
- 6. State linear homogeneous and non-homogeneous recurrence relation with examples. Find all solutions of the recurrence relation: $a_n = 2a_{n-1} + 2n^2$ with initial condition $a_1 = 4$. [3+5]
- 7. Use Dijkstra's algorithm to find the length of shortest path from vertex A to vertex Z in the following weighted graph. Also highlight the shortest path/paths in the graph:

[8]

8. State Handshaking Theorem for undirected graph. Define bipartite graph with suitable example. Draw the figure for Complete Bipartite Graph K_{3,4} and determine its chromatic number.

9. How does Hamiltonian circuit differ from Euler circuit? Define Planar and Regular
 10. Write shart in [4+2+2]

[4+4]

- 10. Write short notes on:
 - a) Tree and its applications
 - b) Max-flow Min-cut Theorem

47 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2073 Magh

Exam.	New Back (2066 & Later Batch)					
Level	BE	Full Marks	80			
Programme	BEX, BCT	Pass Marks	32			
Year / Part	П/П	Time	3 hrs.			

Subject: - Discrete Structure (CT551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. Hypothesis: "If today is Sunday then I will have a test in MFC and IT. If my IT teacher is sick then I will not have a test in IT. Today is Sunday and my IT teacher is sick." Conclusion: "I will have a test in MFC." Use rule of inference to prove it.
- 2. What do you mean by weak principle of mathematical induction? Prove that $5^n -1$ is divisible by 4 for all $n \ge 1$ using Induction method. [3+5]
- 3. What are the central ideas of formal and informal proofs? Prove that $\sqrt{2}$ is irrational. [4+4]
- 4. Define Non-Deterministic Finite State Automata. Design a finite-state automation that accepts only those set of strings over {a,b} which ends with *aba*. Precisely, only those strings which end with *aba* should accepted and other strings over {a,b} should be rejected. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram.
- 5. Consider the regular grammar $G = (N, T, P, \sigma)$ where N =set of non-terminal symbols = { σ , C}, T = set of terminal symbols = {a, b}, P is the set of production rules = { $a \rightarrow b\sigma$, $\sigma \rightarrow aC$, C $\rightarrow bC$, C $\rightarrow b$ } and σ being the starting symbol. Construct a non-deterministic finite state automaton equivalent to the given regular grammar. Use this non-deterministic finite state automaton to generate equivalent deterministic finite state automaton.
- 6. What do you understand by recurrence relation? Explain in brief. Setup a recurrence relation for the sequence representing the number of moves needed to solves Hanoi Tower puzzle.
- 7. Draw neat and clean graphs of: W_6 (a wheel with 6 peripheral vertices), K_6 (a complete graph with 6 vertices, Q_3 (a 3 dimensional hypercube) and $K_{2,5}$ (complete bipartite graph). Use graph coloring technique to color each of these graphs and state their respective chromatic numbers.
- 8. Find the shortest path from vertex a to vertex Z Highlight the shortest paths in the graph. [6+2]

- Explain the Euler circuit and Hamilton circuit with example. State the necessary and the sufficient conditions for them.
- 10. Write short notes on:
 - i) Spanning Trees
 - ii) Max-flow min-cut theorem

[3+5]

[8]

[2+6]

[4+4]

[4+4]

[4+4]

4" TRIBHUVAN UNIVERSITY	Exam.		Regular	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	\$0
Examination Control Division	Programme	BEX, BCT	Pasa Marks	32
2072 Ashwin	Year / Part	II / II	Time	3 hrs.
Subject: - Disc	rete Structur	e <i>(CT551)</i>		·
 Candidates are required to give their ans Attempt <u>All</u> questions. The figures in the margin indicate <u>Full</u> Assume suitable data if necessary. 	swers in their o <u>Marks</u> .	wn words as fa	ar as practicable	•
VUsing resolution principle, prove that have a test in Discrete Structure or Micr then I will not have a test in Micr Microprocessor teacher is sick." lead to Structure".	the hypotheses oprocessor". If roprocessor." a the conclusion	s "If today is my Micropro and "Today i that "I will h	Tuesday then I cessor teacher is s Tuesday and ave a test in Dis	I will s sick 1 my screte
 Prove that √2 is irrational by giving a formula (T∨S) → ¬Q where ¬ denotes to of variables and → is the symbol for improvements. 	proof by contr the negation of plication.	adiction. Drav variable, v de	w the tableau for notes the disjun	or the action [5
State the contrapositive and inverse of the I will stay at home". Using mathematic statement is true: $3+3*5+3*5^2+3*5^n =$	the conditional is cal induction to $3(5^{n+1}-1)/4$ wh	statement, "If echnique, prov enever n is not	it snows tonight we that the follo nnegative intege	then wing er. [2
Differentiate between a Finite State Markov Finite State Automata that accepts precino. of a's. Your design should include the transition table and the transition diagram	achine and a l sely those strir he proper defin n.	Finite State A ag over {a,b} t ition of the Fi	utomation. Des hat contains an nite State Auto	ign a even mata, [2
Consider the regular grammar $G = \{\sigma, C\}$, $T = \text{set of terminar}$ symbols = $\{\sigma, C\}$, $T = \text{set of terminar}$ rules = $\{\sigma \rightarrow b\sigma, \sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b\}$ deterministic finite state automaton equivalent deterministic finite state automaton to automaton	(N, T, P, σ) al symbols = and σ being the ivalent to give σ generate equi	where $N = {a,b}, P$ is the starting symplem regular graduity determined by the symplem of the starting symplem.	set of non-tern ne set of produ- bol. Construct a mmar. Use this ministic finite	minal oction non- state
Find all the solutions of the recurrence re $a_n = 5a_{n-1} - 6a_{n-2} + 2^n$ with initial condition	elation: tions $a_0 = 1$ and	$1 a_1 = 4$		
Explain the Euler path and Euler circuit and the sufficient conditions for Euler circuit	t with the help rcuits and path	of a diagram s.	. State the nece	ssary [5
Draw neat and clean graphs of: C_7 (a cy vertices), Q_3 (a 3 dimensional hypercub- coloring technique to color each of th numbers.	where $K_{3,4}$ (constant) with 7 verters $K_{3,4}$ (constant) where $K_{3,4}$ (constant) with	ices), K ₅ (a co mplete biparti d state their 1	omplete graph w te graph). Use g respective chron	vith 5 graph matic [4

_94 Use Dijkstra's algorithm to find the length of shortest path in the following weighted graph. Also highlight the shortest path/paths in the graph:

11

- 10. Write short notes on:
 - i) Maximum Flow Mincut Theorem
 - ii) Handshaking Theorem

[4+4]

Provide American		Regular / Back			
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80	
Examination Control Division	Programme	BEX, BCT	Pass Marks	32	
2071 Bhadra	Year / Part	11 / 11	Time	3 hrs.	

Subject: - Discrete Structure (CT551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- Assume suitable data if necessary.

V. Use resolution to show the hypothesis "It is note raining or Sita has her umbrella," "Sita does not have her umbrella or she does not get wet," and "It is raining or Sita does not get wet" imply that "Sita does not get wet."

2. Use mathematical induction to show that

$$/1^{3} + 2^{3} + \dots + n^{3} = [n(n+1)/2]^{2}$$

whenever n is a positive integer.

3. State the converse, contrapositive and inverse for the conditional statement, "I go to the beach whenever it is a sunny summer day." [3]

4. Why is a tableau method important in propositional logic? Draw the tableau for the formula [2+3]

 $\Phi = (p \land \neg q) \rightarrow s$

Where \neg denotes the negation of a variable, \land denotes the conjunction of variables and \rightarrow denotes the implication.

5. Differentiate between Finite State Machines and Finite State Automata. Design a Finite State Automata that accepts precisely those strings over {a, b} that contain an odd number of b's. Your design should include the proper definition of the finite-state automation, transition table and the transition diagram. [2+6]

6. Consider the regular grammar $G = (N, T, P, \sigma)$ where N = Set of Non-Terminals = $\{\sigma, A, B\}, T = Set$ of Terminals = $\{a, b\}$ with productions. [4+4]

 $\int \sigma \rightarrow aA, \sigma \rightarrow bB, A \rightarrow a, B \rightarrow a and starting symbol \sigma$.

Construct a Non-Deterministic Finite State Automata equivalent to the above given regular grammar and convert this into equivalent Deterministic Finite State Automata.

7. Find all solutions of the recurrence relation

 $a_n = 3a_{n-1} + 2^n$

with initial condition $a_0 = 5$.

[8]

[8]

8. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

9. Draw the figure for the complete graph with 6 vertices (This is usually denoted by K₆).
 Define the term graph coloring and the chromatic number of a graph coloring. What is the chromatic number of the complete graph K₆? [2+2+2+2]

10. Explain the Hamiltonian path and Hamiltonian circuit with the help of a diagram. State the necessary and sufficient conditions for Euler circuits and paths. How is Euler circuit different from the Hamiltonian circuit? [3+2+2]

11. Write short notes on:

a) Spanning tree
b) Cutsets and Cutvertices
c) Application of trees

[3+3+3]

37 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2070 Bhadra

Exam.		Regular			
Level	BE	Full Marks	80		
Programme	BEX, BCT	Pass Marks	32		
Year / Part	II / II	Time	3 hrs.		

Subject: - Discrete Structure (CT551)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. If P = F, Q = T, S = T, R = F, then find truth value of:

(8) a)
$$(S \to (P \land \overline{R}) \land ((P \to (R \lor Q)) \land S))$$

b) $((P \land \overline{Q}) \leftrightarrow (Q \land R)) \to (S \lor \overline{Q})$

- 2. Using rules of inferences, show that the hypothesis "It is not rainy today and its hotter
- than yesterday", "We will go for movie only if it is rainy", "If we do not go for movie, then we will go for shopping", and "If we go for shopping, then we will be home by sunset" lead to the conclusion "We will be home by sunset". You are required to show each steps and give reasons for those steps before you come to desired conclusion from the hypothesis.

3. Prove by Mathematical Induction: 8

 $1.2.3 + 2.3.4 + 3.4.5 + \dots + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4$

+4. Design a Finite State Machines (FSM) that performs binary serial addition. Define DFA

- and NDFA. Construct DFA that recognize the language "The set of bit brings that do not contain three consecutive 0's. Show only necessary figures and state diagrams. [3+2+3]
- (4)+5. Define and differentiate between context-sensitive, context free and regular grammars with suitable examples. Explain in short the role of regular expressions.
 [6+2]
- 6. What do you understand by recurrence relation? Explain in brief. Derive and solve the recurrence relation for Tower of Hanoi puzzle. [2+6]

4 ×7. Is K_{3,3} graph a planar graph? Explain it with suitable reasons. [4+4]
6 8. Define Regular and Bipartite graphs with suitable examples. [3+3]

- (2) 9. Define level and height of tree? What is full m-ary tree and balanced tree? [2+2]
- 6 10. State the handshaking theorem for the undirected graph and use it to prove the theorem that an undirected graph has an even number of vertices of odd degree.

11. Write down the short notes on the following:

(6) a) Maximum Flow Mincut Theorem

b) Graph Coloring

[4+4]

[8]

[8]

[4+4]

	TRIBHUVAN UNIVERSITY	Exam.	New Back	(2066 &	Later	Batch
_ IN	ISTITUTE OF ENGINEERING	Level	BE	Full N	1arks	80
Exai	nination Control Division	Programme	BEX, BCT	Pass N	Marks	32
	2070 Magh	Year / Part	<u> II / II</u>	Time		3 hrs
	Subject Dies	unto Staniotica	(CTEE1)			
<u></u>	Subject Disc	rete Structure	(CISSI)			
$\begin{array}{c} \checkmark & C \\ \checkmark & A \\ \checkmark & T \\ \checkmark & T \\ \checkmark & A \end{array}$	andidates are required to give their and ttempt <u>All</u> questions. he figures in the margin indicate <u>Full</u> ssume suitable data if necessary.	swers in their o <u>Marks</u> .	wn words as fa	ar as prac	ticable	
1.	Construct an argument using rul hypotheses "Randy works hard," a dull boy," and "If Randy is a job" imply the conclusion "Randy	les of inference "If Randy wo dull boy, then y will not get t	ce to show the orks hard, the he will not the job."	hat the n he is get the	8]	5]
2.	Use mathematical induction to sh	low that			[8]	1
-,*	$1^{2} + 2^{2} + \cdots + n^{2} = n (n + 1) (1)$	(2n + 1)/6			Į0	L
	whenever n is a positive integer.					
3.	State the converse, contrapositiv statement, "A positive integer is other than 1 and itself."	e and inverse a prime only	for the cond if it has no d	litional ivisors	[3]
4.	Define satisfiable and unsatisfiab the formula $\Phi = \neg((p \land q) \lor r)$ where \neg denotes the negation disjunction of variables and variables.	le formulas. D of a variab ∧ denotes th	Draw the table ble, ∨ denot he conjuncti	eau for es the on of	[2+3]
5.	Define Finite State Machines. De accepts precisely those strings consecutive a's. Your design sho of the finite-state automaton, tr diagram.	esign a Finite (over {a, b} ould include th ansition table	State Automa that contai he proper def and the tra	ta that n two inition nsition	[2+6]
6.	Consider the regular grammar G Non-Terminals = $\{\sigma, A, B\}$, T= productions	= (N, T, P, c = Set of Term	5) where N= inals = {a, b	Set of } with	[4+4]
	$\sigma \rightarrow a, \sigma \rightarrow bB, A \rightarrow bA, A \rightarrow aB,$ symbol σ . Construct a Non-Deterministic Fi the above given regular gramma	$A \rightarrow b, A \rightarrow a,$ inite State Autor r and convert	B→b and s omata equiva this into equi	tarting lent to valent		
	Deterministic rinite State Autom	สเส.				
7	Find all solutions of the recurrence $a_n = 2a_{n,1} + 2^n$	e relation			[8]	
	with initial condition $a_2 = 2$					

¥.,-

11

8. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

- 9. Draw the figure for the complete graph with 5 vertices (This is usually denoted by K_5). Define the term graph coloring and the chromatic number of a graph in graph coloring. What is the chromatic number of the complete graph K_5 .
- 10. Construct an influence graph for the board members of a company if the President can influence the Director of Research and Development, the Director of Marketing, and the Director of Operations; the Director of Research and Development can influence the Director of Operations; the Director of Marketing can influence the Director of Operations; and no one can influence, or be influenced by, the Chief Financial Officer.
- 11. How is Euler circuit different from the Hamiltonian circuit? Explain

12. Write short notes on

- a) Spanning tree and its applications
- b) Network Flows
- c) Regular graphs

[2+2+2+2]

[4]

[3]

[3+3+3:] /

	3	7 TRIBHUVAN UNIVERSITY	Exam.		Regular	
	 	INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
	Ex	amination Control Division	Programme	BEX, BCT	Pass Marks	32
unati		2068 Bhadra	Year / Part		Time	3 hrs.
		Subject 1	Diagnoto Straig			
	······································	Subject S				entre
haa ah dhind garaha	- 	Condidates are required to give their an	swers in their o	wn words as fa	ir as practicable	Anne a Canadaine Al ite ann
	1	The figures in the margin indicate Full	Marks			
	\checkmark	Assume suitable data if necessary.	<u>111 ul RS</u> .			
	1)	Using rules of inferences, show that the h	ypotheses "If yo	ou send me an	e-mail message,	then
		I will finish writing the program," "If yo	u do not send m	e an e-mail me	essage, then I wi	ll go
		conclusion "If I do not finish writing the	y, then I will wa	ke up teeling r	effreshed" lead to	o the
		You are required to show each steps and	give reasons for	those steps he	fore you come to	the
		desired conclusion from the hypotheses.	Bive reasons for		loro you come a	(8)
	2)	Use mathematical induction to prove that				(8)
		$3 + 3 \cdot 5 + 3 \cdot 5^{2} + \dots + 3 \cdot 5^{n} = 3(5^{n+1} -$	1)/4		_	· - •
		whenever n is a nonnegative number.				
	3)	Prove that $\sqrt{2}$ is irrational by giving a	proof by contra	adiction. Draw	the tableau for	the
		formula $(T \lor S) \rightarrow \neg Q$ where \neg denotes the	e negation of a v	ariable, ∨ deno	tes the disjunction	on of
	· .	variables and \rightarrow is the symbol for implication	tion.		(;	5+3)
	4)	Design a finite-state automaton that accept	ots only those se	t of strings ove	er $\{a, b\}$ which s	tarts
		with baa. Precisely, only those strings w	hich begin with	baa should b	e accepted and c	other
		strings over $\{a, b\}$ should be rejected. Yo finite-state automaton, transition table are	ur design should	include the pro	oper definition o	f the $(1+3)$
	5)		i the transition d	lagram.	(37.	2 -3)
)	Discuss regular expressions and regular l	anguages in det	ail with suitable	le examples. Exp	olain (+4)
	0		es.			
	0)	Find all solutions of the recurrence relatio $a = 2a + 3^{n}$	n			(8)
		with initial condition $a_1 = 5$				
	7)	Les Diikotra's algorithm to find the local	6.0	48 . 8 . 4		•
	<i>י</i> ן <i>ו</i> י	he weighted graph displayed below	n of the shortest	path between t	he vertices a and	(8)
		1.	c	J		
			5 0			•.
		4		6		
			8			
			2	νz		
		2		2		
				3		
		Ē	10 e			
	8)	Draw the figure for the complete biparti	te graph K _{3,4} a	nd the cycle g	raph with 5 ver	tices
		This is usually denoted by C_5). What	is the chromat	ic number of	the drawn com	plete
		Dipartite graph $K_{3,4}$ and the cycle graph C	5.		(2+2+)	2+2)
	9)	State the handshaking theorem for the un	directed graph a	and use it to pr	ove the theorem	that
	÷7.	an undirected graph has an even number of	of vertices of odd	d degree.	ф. (2+4)
	10)	Write short notes on: -	•		(4+	3+3)
		a) Eulerian graph	، رو رو رو		·	
		b) Hamiltonian graph	د الج - معمد عند الدار بالمعقود الأقريدي به - معرف المراجع المعرف المعرف الم			

37 TRIBHUVAN UNIVERSITY	Exam.	Regular (2	2066 & Later I	56 & Later Batch)	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80	
Examination Control Divis	ion• Programme	BEX, BCT	Pass Marks	32	
2069 Bhadra	Year / Part	П/П	Time	3 hrs.	

Subject: - Discrete Structure (CT551)

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

Attempt <u>All</u> questions.

1

- 2

4

✓ The figures in the margin indicate *Full Marks*.

✓ Assume suitable data if necessary.

Construct an argument using rules of inference to show that the hypotheses "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on," "If the sailing race is held, then the trophy will be awarded," and "The trophy was not awarded" imply the conclusion "It rained." You are required to show each step and give reasons for those steps before you come to the desired conclusion from the hypotheses.

Use mathematical induction to prove the inequality $n < 2^n$ for all positive integers n.

Why tableau method is important in the propositional logic? Draw the [2 + 6 = 8] tableau for the formula set

 $\Phi = \{(p \land \neg q) \rightarrow s, \neg q \lor \neg r, p \land t\}$

where \neg denotes the negation of a variable, \lor denotes the disjunction of variables, \land denotes the conjunction of variables and \rightarrow denotes the implication.

Differentiate between Deterministic Finite State Automata and Non-Deterministic Finite State Automata. Design a Finite State Automata that accepts precisely those strings over {a, b} that contain an even number of a's. Your design should include the proper definition of the finite-state automaton, transition table and the transition diagram.

Consider the regular grammar defined by $T=\{a, b\}$, $N=\{\sigma, C\}$ with productions

 $\sigma \rightarrow b\sigma$, $\sigma \rightarrow aC$, $C \rightarrow bC$, $C \rightarrow b$ and starting symbol σ .

Construct a Non-Deterministic Finite State Automata equivalent to the above given regular grammar and convert this into equivalent Deterministic Finite State Automata. [8]

[8]

[2+6 = 8]

[4 + 4 = 8]

Find all solutions of the recurrence relation $a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3} + n4^n$ with initial condition $a_0 = -2$, $a_1 = 0$ and $a_2 = 5$.

Ø

7

9

Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the weighted graph displayed below.

8 Draw the figure for the complete bipartite graph $K_{4,5}$ and the cycle graph with 6 vertices (This is usually denoted by C₆). What is the chromatic number of the drawn complete bipartite graph $K_{4,5}$ and the cycle graph C₆.

Define a tree and discuss its various properties as well as applications of trees.

41

- 10 Write short notes on:
 - a) Eulerian graph
 - b) Max flow, min cut theorem
 - c) Planar and regular graphs

[8]

[8]

[2+2+2+2]

[1+2+4=7]

[3+3+3=9]