16 TRIBHUVAN UNIVERSITY	Exam.	中心用新闻机	Regular	ni generi
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BEL	Pass Marks	32
2075 Bhadra	Year / Part	111 / 11	Time	3 hrs.

Subject: - Digital Control System (EE652)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All questions</u>.
- ✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1.	a)	Explain the Operation of Digital System with suitable block diagram.	[4]
J	b)	What do you mean by sample and hold circuit? Explain how tracking and hold mode are employed in digital control system.	[8]
	c)	Find the region of convergence for $x(k) = -a^{k}u(-k-1)$, where $u(k)$ is the unit step	
		function.	[4]
2.	a)	State and prove final value theorem of z-transform.	[1+3]
	b)	Obtain z-transform of	[4]
		$\mathbf{x}(\mathbf{t}) = \mathbf{sin} \mathbf{wt} ; \mathbf{t} \ge 0$	

[8]

[4]

[6]

[6]

c) Obtain the inverse z-transform of:

$$X(z) = \frac{z^2}{(z-1)^2(z-e^{-at})}$$

3. a) Find the discrete time output C(z) of the following closed loop system.

b) Examine the stability of the following characteristics equation.

 $p(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08$

c) Assume that a digital filter is given by the following difference equation:

$$y(k) + a_1y(k-1) + a_2y(k-2) = b_1x(k) + b_2x(k) + b_2x(k-1)$$

Draw block diagrams for the filters using (i) standard programming and (ii) ladder programming.

b) Design a digital proportional-plus-derivative controller for the plant as shown in figure below. It is desired that the damping ratio ξ of the dominant closed loop poles be 0.5 and the undamped natural frequency be 4 rad/sec. the sampling period is 0.1 sec.

5. a) Obtain the state space representation of following pulse transfer function:

$$\frac{Y(z)}{U(z)} = \frac{0.368z^{-1} + 0.264z^{-2}}{1 - 1.368z^{-1} + 0.36z^{-2}}$$

i) Controllable canonical form

ii) Observable canonical form

b) Determine pulse transfer function matrix for the system which is described by state space representation as:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k) \text{ and}$$
$$\begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k)$$

[12]

[8]

[8]

22	TRIBHU	VAN UNIVER	SITY
INS	FITUTE O	F ENGINE	ERING
Exami	nation	Control	Division
	2075	Baisakh	

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEL	Pass Marks	32
Year / Part	III / II	Time	3 hrs.

[8]

[4]

[16]

	S	ubject:	-	Di	gital	Control	S	ystem	(EE652	j
--	---	---------	---	----	-------	---------	---	-------	--------	---

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

a)	With the help of block diagram, explain digital control system in detail. Also mention	
	the advantages of digital control system over analog.	[8]
b)	Derive the transfer function of ZOH and also find the Pulse transfer function.	[8]
a)	Find the z-transform of the following:	[4+4]
	a) b) a)	 a) With the help of block diagram, explain digital control system in detail. Also mention the advantages of digital control system over analog. b) Derive the transfer function of ZOH and also find the Pulse transfer function. a) Find the z-transform of the following:

(i)
$$x(t) = \frac{1}{4}t - \frac{1}{4}(t-4)l(t-4)$$
 (ii) $x(t) = \begin{cases} 0, & t < 0 \\ \sin \omega t, & t \ge 0 \end{cases}$

b) Solve the difference equation:

X(k+2)+1.379X(k+1)+0.3679X(k)=0.3679u(k) where u(k) is step input and x(0)=0, x(1)=0.3679. [8]

- 3. a) Explain with suitable diagram how constant damping ratio line in s-plane is mapped into z-plan? [4]
 - b) Realize the digital filter by ladder programming.

$$G(z) = \frac{128z^{-3} + 224z^{-2} + 106z^{-1} + 11}{128z^{-3} + 160z^{-2} + 34z^{-1} + 1}$$

c) Examine stability of characteristic equation.

$$P(z) = z^3 - 1.1z^2 - 0.1z + 0.2 = 0$$

4. A control system block diagram shown in figure below is of satellite communication system. Design a lead compensator D(z) to stabilize a satellite position. The sampling rate of digital controller is 10 samples per second. Consider design criteria: (i) damping ratio must be greater than 0.6, (ii) damped natural frequency should not exceed 1 Hz. i.e. $\omega_d < 0.1\omega_n$, and the time constant for the closed loop control system should be less than 0.5 second with 5% criterion for settling time.

5. a) Obtain the state space representation of the following pulse transfer function in controllable canonical form.

$$\frac{Y(z)}{X(z)} = \frac{4z^3 + 3z^2 + 5z + 4}{2z^3 + 5z^2 + 2z + 3}$$

b) Obtain Pulse transfer function matrix of the following state space representation: [10]

$$x(k+1) = Gx(k) + Hu(k)$$

$$\mathbf{y}(\mathbf{k}) = \mathbf{C}\mathbf{x}(\mathbf{k}) + \mathbf{D}\mathbf{u}(\mathbf{k})$$

Where
$$G = \begin{bmatrix} -a1 & 1 & 0 \\ -a2 & 0 & 1 \\ -a3 & 0 & 0 \end{bmatrix}$$
, $H = \begin{bmatrix} h1 \\ h2 \\ h3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

And $D = b_0$

22 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2074 Bhadra

Exam.	Regular				
Level	BE		Full Marks	80	
Programme	BEL	an seawe	Pass Marks	32	
Year / Part	III / II		Time	3 hrs.	

Subject: - Digital Control System (EE652)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.

1

- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

- b) Compare different types of sampling operations used for sampling of continuous time signal. [4]
- c) Write the advantages of digital control system over analog control system.
- 2. a) Obtain the inverse z-transform of

$$x(z) = \frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$$
[4]

using Inversion integral method.

b) Obtain X(z) by the use of convolution Integral in the Left Half of s-plane of the transfer function.
 [4]

$$X(S) = \frac{1}{S^2(S+1)}$$

c) Solve the following difference equation using z transform method. Also determine the value of x(k + 2)/x(k + 1) as k approaches to infinity. [8]

x(k + 3) - 2.2x(k + 2) + 1.57x(k + 1) - 0.36x(k) = u(k)

where, u(k) = 1 for all $k \ge 0$, and x(0) = x(1) = x(2) = 0.

3. a) Obtain the closed loop transfer function of the system shown in figure below. Assume proportional gain (k_p) = 1, Integral gain (k_i) = 0.2. [8]

Derivative gain $(k_d) = 0.2$. [Take T = 1 sec]

b) Realize the given digital controller by Ladder Programming.

$$G(z) = \frac{2z^2 + 2.2z + 0.2}{z^2 + 0.4z - 0.12}$$

[8]

[4]

- 4. a) Examine the stability of the characteristic equation given by $P(z) = z^3 - 1.1z^2 - 0.1z + 0.2 = 0.$
 - b) Design a digital PI controller such that the dominant closed loop poles have damping ratio $\xi = 0.5$, sampling period T = 1, and $\frac{\text{wd}}{\text{ws}} = \frac{1}{10}$ and dead time of 2 sec. Also find KV and ess in response to unit ramp input.

5. a) Obtain the state space representation of the system shown below in Jordan canonical form:

$$\frac{Y(z)}{U(z)} = \frac{5}{(z+1)^2(z+2)}$$

b) Obtain the state space representation of the following pulse transfer function by observable canonical form:

$$\frac{Y(z)}{X(z)} = \frac{(0.368z^{-1} + 0.264z^{-2})}{(1 - 1.368z^{-1} + 0.368z^{-2})}$$

c) Derive the pulse transfer function of the given state space representation form

$$x(k+1) = G x(k) + H x(k) \text{ and } y(k) = C x(k) + D u(k)$$
 [6]

[12]

[4]

[6]

[4]